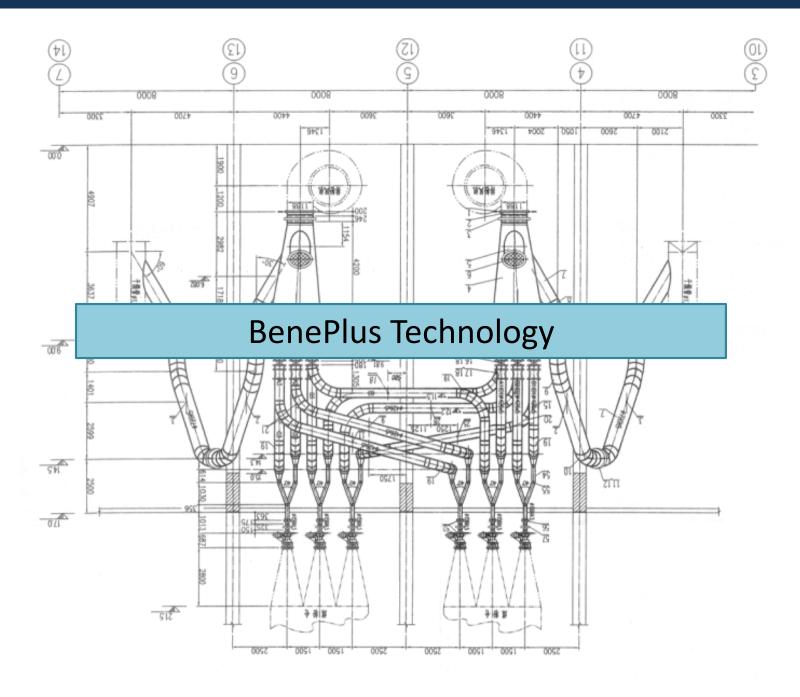

DELIVERING CLEAN & PROFITABLE ENERGY SOLUTIONS

LPA gained significant experience in coal plant emissions reductions and performance improvements over the past eight years in its China operations

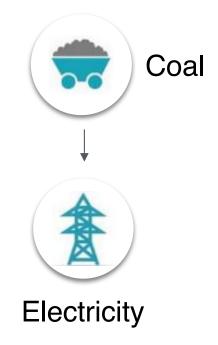
Since 2014, LPA has built a growing US business focused on natural gas plant NOx reductions. The company has also built experience in coal post-combustion experience in China prior to the US.

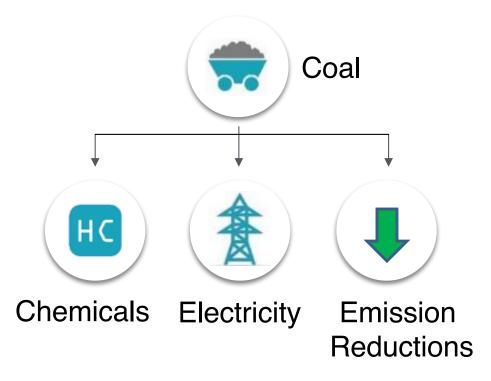


LP Amina's Ongoing SCR & CO Projects in US

#	Name	State	Capacity	Unit Type	Solution	Targeted End Date	NOx Emissions (ppmvd @ 15% O ₂)	
							Before	Target
1	Panda Power Stonewall (NEM)	VA	2x1 CC 750 MW	HRSG	SCR / CO / VOC	Q1, 2017	13.5	2.0 (1.85*)
2	Oregon Clean Energy (NEM)	ОН	2x1 CC 869 MW	HRSG	SCR / CO / VOC	Q2, 2017	24.8	2.0
3	Eagle Valley (NooterEriksen)	IN	2x1 CC 650 MW	HRSG	NH3 Skids / AIG	Q2, 2017	12.5	2.0
4	Carroll County (CMI)	ОН	2x1 CC 750 MW	HRSG	SCR	Q4, 2017	11.2	2.0
5	Lackawanna (CMI)	PA	3x1 CC 1300 MW	HRSG	SCR	Q1, 2018	25.0	2.0
6	Sunbury (NEM)	PA	3x1 CC 1064 MW	HRSG	SCR / CO / VOC	Q4, 2017	12.8	2.0
7	Moxie Freedom (CMI)	PA	2x1 CC 1050 MW	HRSG	SCR	Q4, 2017	25.0	2.0
8	Lordstown (NEM)	ОН	2x1 CC 949 MW	HRSG	SCR / CO / VOC	Q1, 2018	29.6	2.0
9	CPV Towantic (CMI)	СТ	2x1 CC 1050 MW	HRSG	SCR	Q4, 2017	25 / 42 (DO)	2.0 / 5 (DO)
10	Grayson (NEM)	CA	2 1x1 CC 75 MW	HRSG	SCR / CO / VOC	Q2, 2019	45 (30%)	2.0

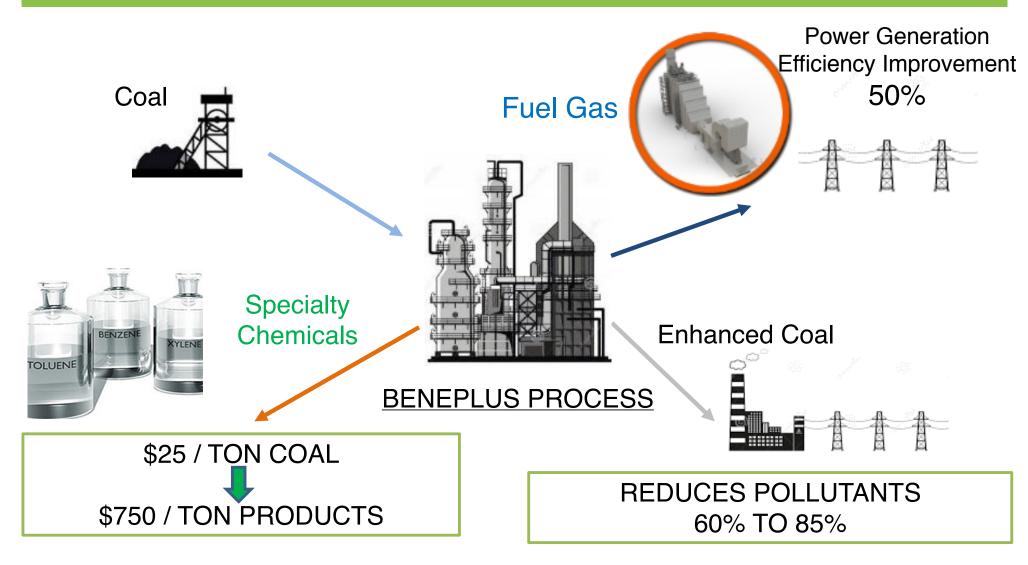
LP Amina's Completed SCR Projects in China


#	Name	Province	Capacity	Unit Type	Solution	Targeted End Date	NOx Emissions (ppmvd @ 15% O ₂ OR lb/MMBtu)		
						Liiu Date	Before	Target	Actual
18	Caoqiao (Beijing Energy)	Beijing	2x1 CC 700 MW	HRSG	SCR	Q3, 2011	25	3.75	3.25
28	Jingfeng (Beijing Energy)	Beijing	1x1 CC 410 MW	HRSG	SCR	Q3, 2013	34	6.8	5.9
29-30	Liaocheng (Huaneng)	Shandong	2 330 MW	T-Fired	SCR	Q2, 2014	0.44	0.07	0.07
31	Dalian Chemical (DLHG, LLC)	Jiangsu	1 75 tph	T-Fired	LNB / SNCR / SCR	Q2, 2014	0.44	0.08	0.07
35-36	Yixing (Yixing Union)	Jiangsu	2 50 MW	T-Fired	LNB / SNCR / SCR	Q2, 2015	0.40	0.08	0.075


LPA's Patent Pending BenePlus Technology Improves the Economic Viability of a Power Plant and Coal Assets

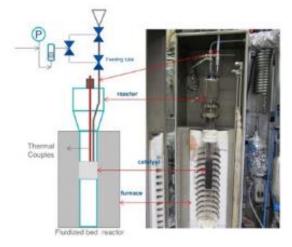
Conventional Approach

LPA's BenePlus Technology



BenePlus enables existing **power plants** to co-produce electricity, valuable **chemicals** and **reduce** emissions.

BENEPLUS IMPROVES THE VIABILITY OF COAL


Process Validated at Lab and Pilot Scale in Collaboration with World-class Partners

Lab Scouting: 2013-14

Southwest Research Institute

Pilot Facility: 2015-17

BenePlus Product Slate for lignite coal

Lignite feed, dry basis	(Feed)		
VM, wt%	43.8		
Ash, wt%	14.5		
Fixed C, wt%	41.8		
Sulfur, wt%	1.7		
Sulfur emissions, lb sulfur/MMBtu lignite burned	1.65		
HHV, Btu/lb, dry	10,103		
HHV, Btu/lb, as received	6,343		
Moisture, wt%	37.2		
Syncoal product	Char		
VM, wt%	25.4		
Ash, wt%	19.0		
Fixed C, wt% (by difference)	55.6		
Sulfur, wt%	0.7		
Sulfur emissions, lb sulfur/MMBtu syncoal burned	0.69		
HHV, Btu/lb	11,016		
Moisture, wt%	1.1		
Yield, lb/100 lb dry coal feed	57.8		
HHV upgrade, HHV _{syncoal} /HHV _{feedcoal} , as rec'd	1.7		
Reduction in sulfur emissions per MMBtu	58%		
Ash retained, lb / 100 lb ash fed	76		

Product Gas Yield on Dry basis lb gas/lb coal fed Compositions (wt%)

			<u> </u>		
CO2		CO2, wt%	10.2		
		CO, wt%	6.67		
		H2, WT%	0.24	10.7	
Fuel Gas		METHANE, WT%	2.18		
		ETHYLENE, WT%	1.16		
		ETHANE, WT%	0.43		
	RG Propylene	PROPYLENE, WT%	1.35		
	KG Propylene	N-PROPANE, WT%	0.15	4.62	
		ISOBUTYLENE, WT%	0.19		
	Naphtha Liq	1-BUTENE, WT%	0.10		
		1,3-BUTADIENE, WT%	0.08		
Hydrocarbons		TRANS-2-BUTENE, WT%	0.09		
nyurocarbons		CIS-2-BUTENE, WT%	0.10		
		2-METHYL-2-BUTENE, WT%	0.11		
		N-HEXANE, WT%	0.13		
		BENZENE, WT%	1.19		
	BTX Liq	Toluene, wt%	0.98		
		Xylene, wt%	0.16		
Sulfur		H2S, WT%	0.84		
Sullur		OTHER SULFUR, WT%	0.13		
Phenol		-	0.1		
Higher HCs			0.2		
		Total, wt%	26.77		

LP AMINA Growth Through Innovation

WLATTA@LPAMINA.COM

CFD images in this presentation were produced with Fieldview 12.0 by Intelligent Light

