

UI Electric T & D Utility Exchange Program (*Pakistan Distribution Companies*)

September 17 – 18, 2012

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

INTRODUCTION

John Prete, Senior Vice President Electric Transmission & Distribution

Joseph Thomas, Vice President Electric System Operations & Client Fulfillment

The United Illuminating Company

Program Agenda

09:00	John Prete	Welcome Introduction, Program Overview
		Overview of United Illuminating Company
<mark>09:15</mark>	Joe Thomas	 History Assets
<mark>09:45</mark>	Walt Booker	 Service Territory Customer Base Safety (Safety Rule Book, Industry Standards NESCIOSHA)
	SYST	EM PLANNING PROCESSES & PRINCIPLES
10:15	Chuck Eves	 Organization and responsibilities of planning unit Staffing, qualifications, and training programs
10:45	Coffee & Tea Break	
11:00	Bob Manning	 Long-term system planning and power requirements
	-	NGINEERING AND DESIGN PROCESS
		Engineering and Design Process Overview
11:30	Paul Kranowski	 Overhead & Underground Distribution Design Process & Criteria
11:50	Robin Lyons	Infrastructure Planning
12:10	Mike Zaffina	 Equipment Design and Construction Standards & Specifications
12:30		Lunch
13:30	Peter Sampiere	 System Planning Tools GIS mapping of distribution network
		Protection & Control
14.00	Bob Peligrini	Protection & Control
14:30	Bryan LaPerle	SCADA
15:00	Guy Cattaruzza	Metering & Telecommunications Smart Metering Electricity Losses / Theft – Control Methods

Program Agenda

15:30	Coffee & Tea Brea	k
15:45 16:00 16:15	Vincent Brescia Ed DelMonte Christian Bilcheck	Infrastructure Planning Live line projects Load reduction / shedding Transmission System Asset Planning
16:30		Roundtable Discussion to Address Questions & Implementation Issues
17:00		Adjourn & Return to Hotel (Dinner with UIL / UI executives)

DAY 4 - TUESDAY, SEPTEMBER 18, 2012: UNITED ILLUMINATING COMPANY

08:30		Delegation meets Andrew <u>Palmateer</u> in hotel lobby for transportation to site visits
Morning	Jim Cole / Joe Flach George Becker Ralph Anderson	Site Visit Tour of New Operation complex Tour of ESWC, 801 Bridgeport Avenue, Shelton Trumbull Substation Singer 345KV GIS Substation
13:00		Lunch
15:00		Roundtable Discussion to Address Questions & Implementation Issues
17:00		Adjourn & Return to Hotel
Evening		Executive Time (Potential tour of Yale University)

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

SAFETY By: Walt Booker, Manager Safety & Technical Training

- *** Safety Mission Statement**
- *** Safety Philosophy Principals**
- *** Best Practices**
- * Incident Investigation
- * Safety Audit
- * Questions

Safety Mission Statement

The United Illuminating Company is firmly committed to protecting the public and our employees from injury through safety training and awareness programs.

This commitment is accomplished by constructing and operating our equipment and work facilities in accordance with a comprehensive safety program that is consistence with regulations, current technology and sound safety business practice.

UI Safety Philosophy – Safety Principles

The following six safety principles govern UI's approach toward safety and are used in all decisions regarding safety. To achieve continuous safety improvement, all employees, from management to hourly workers, will need to know, understand and accept these principles as the standard reference for a safe work environment.

All injuries can be prevented

- * Belief is cornerstone of our safety approach
- Governs our attitude to unsafe acts and conditions
- Establishes responsibility for reporting unsafe conditions
- Causes us to investigate incidents that could have caused injury

Management is responsible for preventing injuries

- * Provide tools, equipment and PPE
- * Provide safety training
- * Hold employees accountable for working safely

All operating exposures can be safeguarded

- * UI Safety Manual
- *** OSHA Regulations**
- * Operating procedures
- * NESC
- * Work practices

Training employees to work safely is essential

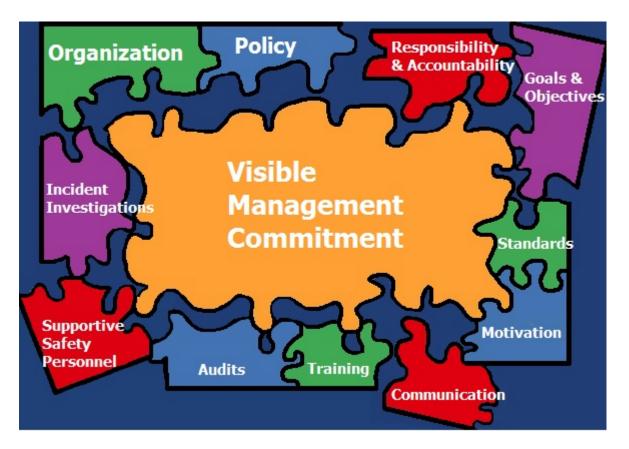
* OJT

- * Enhanced skills training
- * Continuous refresher training

Prevention of personal injuries is good business

- * Time away from work
- * Costs of injuries to the business
- * Morale

Working safely is a condition of employment


- * Applies to all employees
- * Important aspect for assessing employee's work
- * Impacts chances for promotions and raises
- * Persistent disregard can lead to dismissal

Best Practices

Incident Investigation

- Identifies the root cause of the accident or near miss
- Results are communicated through out the company
- * Prevent Recurrence
- * Improve Your Management Safety
- * Demonstrate Your Commitment to Safety

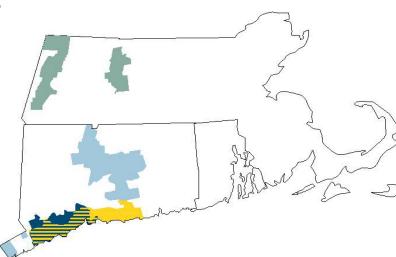
Safety Audit

- Identifies unsafe acts and conditions before an injury takes place.
- Maintains standards by ensuring that everyone follows the rules and procedures you already have and showing you where your rules and procedures are insufficient.
- Measures the effect of safety education by showing how far it has improved work behavior.
- * Reveals weaknesses in the safety program.

Safety Audit (cont'd.)

- Motivates supervisors and hourly employees by giving the results of their safety efforts in a clear, measurable form. Supervisors can see where they are going and plot their progress.
- * Increases safety awareness.

UIL New Headquarters



UIL Holdings Corporation

The United Illuminating Company

Territory: 335 sq miles

~324,000 customers

1,066 employees

 Allowed '10 Transmission ROE (composite) of 12.52%

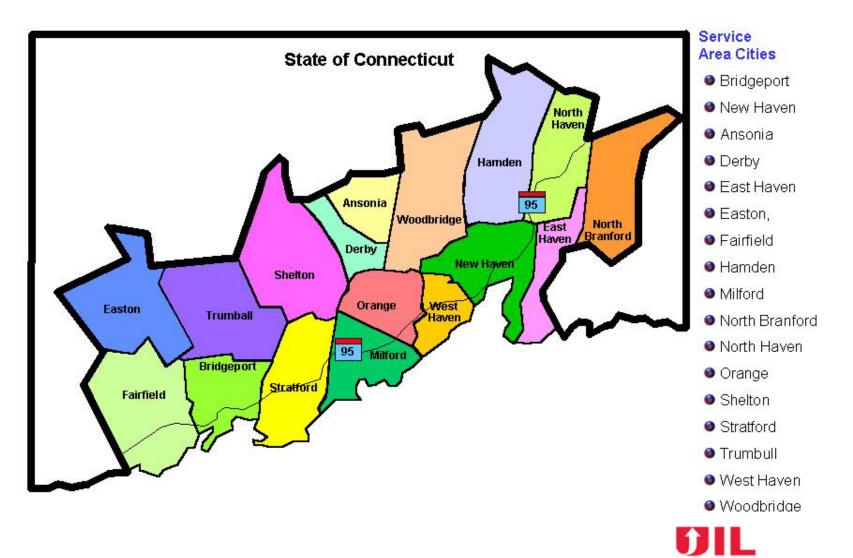
Southern Connecticut Gas (SCG)

- Territory: 512 sq miles
- ■~173,000 customers
- 324 employees
- 2,269 miles of mains with ~131,000 services

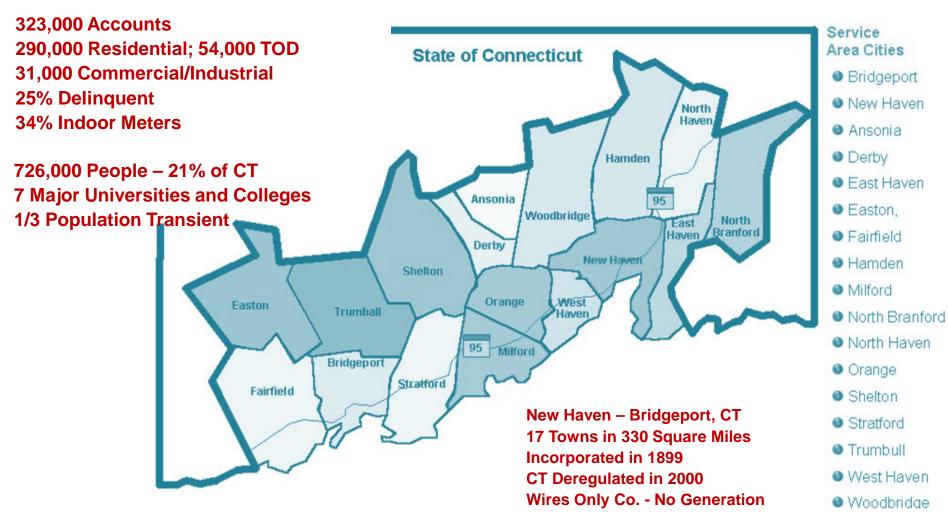
Connecticut Natural Gas (CNG)

- Territory: 716 sq miles
- ~158,000 customers
- 341 employees
- 2,011 miles of mains with ~124,000 services

Berkshire Gas Company

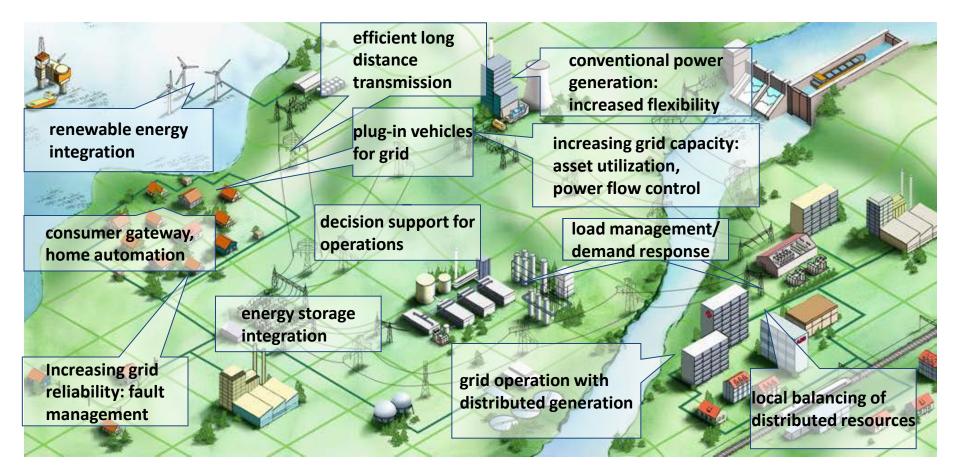

- Service territory: 738 sq miles
- ~35,000 customers
- 127 employees
- 738 miles of mains

berkshire gas


Service Territory

UIL HOLDINGS CORPORATION

Customer Base



Smart System...

... supports the entire electricity supply chain

Smart Benefits

The United Illuminating Company

UIL HOLDINGS CORPORATION

Multiple Benefits, Various Stakeholders

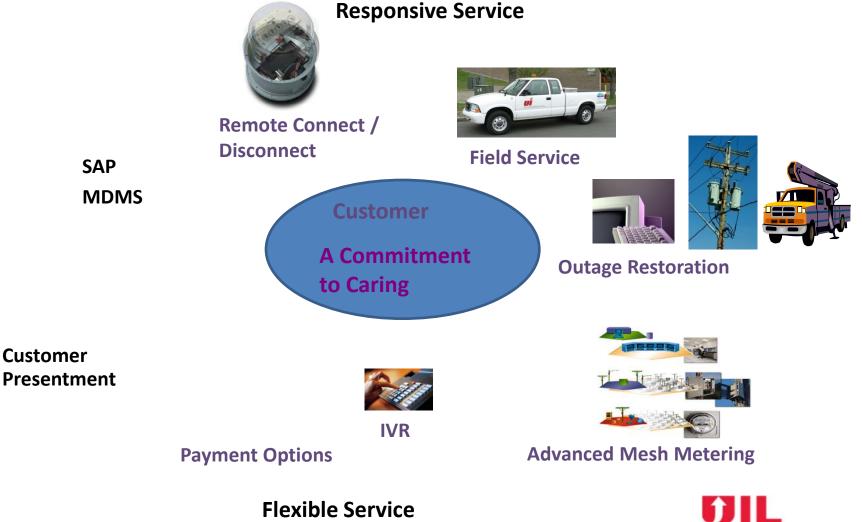
Smart Grid Benefit	Nature of Benefit		Primary Beneficiary		
Sinart Griu Denent	Service	Cost	Customer	Utility	Society
Customer Participation					
Smart meters & home automation	✓	✓	✓	\checkmark	
Accomodation of plug-in hybrid electric vehicles	✓	✓	✓		\checkmark
Facilitation of demand response		✓		\checkmark	\checkmark
System Reliability & Efficiency					
Improved customer service	✓		✓	\checkmark	
Enhanced grid reliability	✓		✓	\checkmark	\checkmark
Optimization of network performance	✓	✓		\checkmark	
Reduce system losses, operating expense		✓	✓	\checkmark	
Asset Utilization					
Equipment monitoring & reduced risk of failure	✓		✓	✓	
Optimization of asset utilization		✓	✓	\checkmark	
Prioritization of system enhancements, repairs	✓	✓	✓	\checkmark	
Environmental Benefits, Renewable Energy, Ener	gy Storage				
Reduced carbon footprint					✓
Wind, solar, biomass integration	✓	✓		\checkmark	\checkmark
Facilitate distributed generation		✓	✓	\checkmark	\checkmark
Enabling micro-grids		✓	✓		

Our Vision

Partner with: **Our Customers** and Technology Solution **Providers**

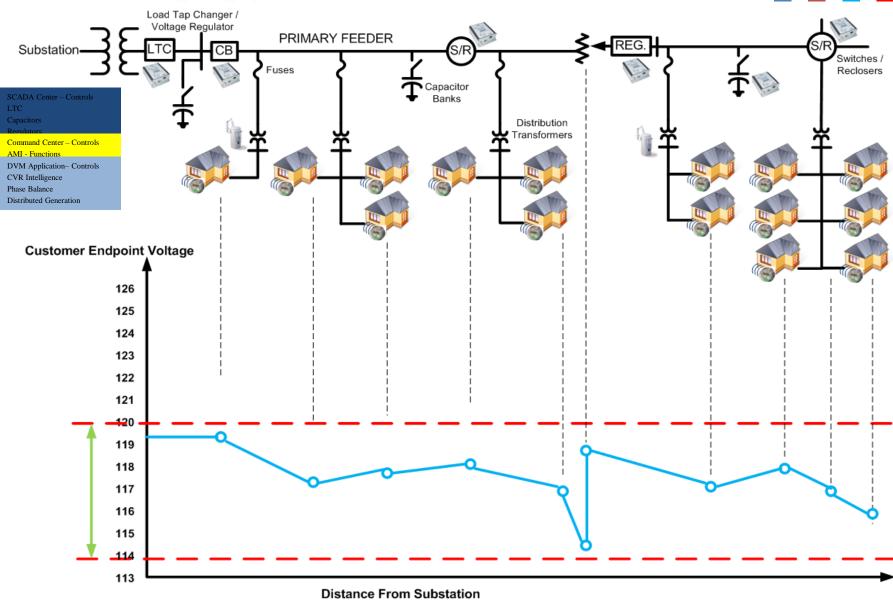
Help customers
 better manage
 their energy use

Help to reduce


 operating cost,
 Improve Customer
 service, and meet
 Energy/Regulatory
 Market Reg'ts

Our Vision

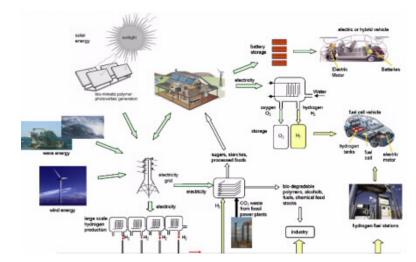
Process Improvement / Technology Integration



Reliable Service

UIL HOLDINGS CORPORATION

AMI Volt Management



Load Management

217 Solar Sites

24,000 Water Heater Load Control Devices 1,118 Distributed Generation Sites 75.04 MW Generation

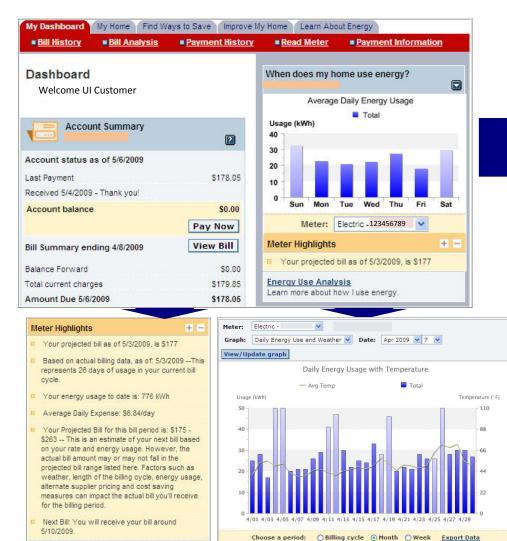
Legislative & Regulatory

Benefits

- Implemented mandatory time-of-use rates
- Remotely Implement Meter Program Changes
- Shifted on-peak time period
- Implemented Net Metering
- Support adaptable and flexible rate and energy management options

Legislative & Regulatory

Benefits


Avoided 87,000 meter site visits Avoided over \$4 million in cost

Customer Tools

"My Account" Dashboard

Customer Tools

Investment Calculator

Savings	\$4,675 Avg. Home			
	Uses Uses Mast			
\$280 - \$487	Energy Energy			
\$231 - \$386				
\$7 - \$12	Total O Electricity O Gas O Oil			
\$91 - \$152	My Energy Bills			
	Enter your energy bills to find out how your home's			
\$164 - \$274	energy use compares.			
\$33 + \$41	How does my home use energy?			
507 - 502	Annual Total Cost			
\$127 - \$155	Heating \$1,401 Het Water \$1,367 Pool \$1,347			
	Cither 5911			
\$57 - \$96	Cooling \$508			
\$99 - \$164	Food Storage \$270 Cooking \$169			
	\$231 - \$386 \$7 - \$12 \$91 - \$152 \$164 - \$274 \$33 - \$44 \$67 - \$02 \$127 - \$155 \$67 - \$96			

stat tips <u>Click Here</u> To learn more costs saving The

Rate Comparison-TOD Rate Comparison Calculator You can compare the trendts of anew role plan and combine it with a new energy-saving strategy (WVI) see your ourset bit and mater data to analyze your savings under various rate plans that you can choose.

Bill Analysis

	Selected bill: 8/07/2007	Last month: 7/05/2007	
2 Billing Days:	32 days	30 days	• \$34
Basic Service Charge;	\$12.12	\$12.12	No Change
Average Cost per kWh:	\$0.2082 / kWh	\$0.2064 / kWh	 \$1
Average Use per Day: Analyze Usege Change	81.75 KWh / day	71.13 ki/ih / day	◆ \$66
Total Electric Charges:	\$556.83	\$456.91	+ \$99.92

8/07/2007 Bill Highlights

+ Energy Charges:	Your energy charges were \$99.92 higher for this bill.
+Electric Usage:	Your electric usage increased for this bill.
Weather:	The weather may have increased your bill by \$50 - \$83
+ Billing Period:	The <u>billing period</u> for this bill is longer as compared to the previous bill.
+ Electric Rate:	Your <u>electric rate</u> decreased this month.
Other Charges:	Other "non-energy" charges totaling \$2.00 are included in this bill.

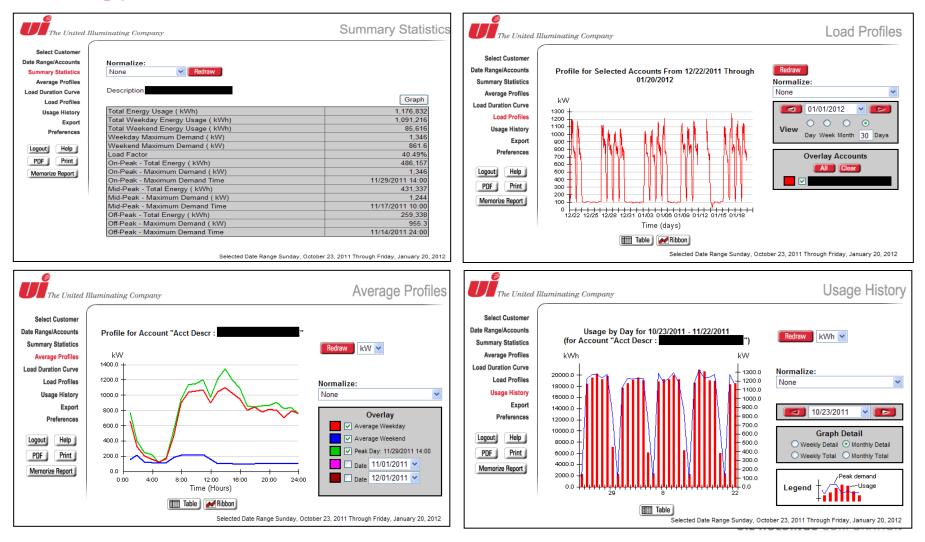
Bill	Highlights
÷	Your energy charges were \$ 99.92 higher for this bill.
1	Your electric usage increased for this bill.
^	The weather may have increased your bill by \$50 - \$83.
1	A longer billing period may have increased your Electric usage for this bill compared to the previous bill.
_	Vous electric rate decreased this meath

Your electric rate decreased this month.

Other "non-energy" charges totaling \$ 2.00 are included in this bill.

Bill Analysis Still have questions about this bill? Find out more about why your bill has changed.

Carbon Calculator



UIL HOLDINGS CORPORATION

Customer Tools

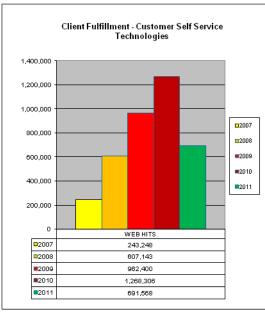
Energy Profiler Online

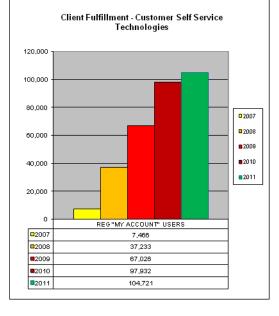
Remittance

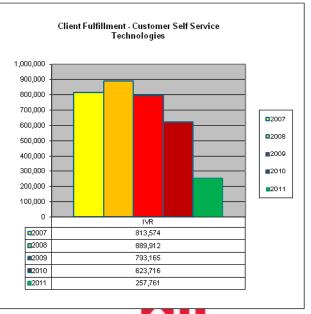
- EZ Pay Project:
 - Implement bill print, ACH and credit card solution to improve UI's remittance process
 - Mitigate uncollectible risk
 - Provide Smart Technologies to improve customer satisfaction and Reduce Operating Cost
- Business Need:
 - Improve Revenue Cycle Service process
 - Improve Cash Flow
 - Mitigate Uncollectible Risk
 - Improve Customer Satisfaction

Benefits

- Process Improvement
 - Disconnect / Reconnect process
- Multiple payment options
 - Non-enrolled one-time payments
 - Channels web, IVR, & live agent
 - Payment Types ACH, Credit, & Debit
 - Enrolled Web Payment
 - Payment Types ACH only
 - Integration with My Account (Aclara)
 - Soft Post Near Real-Time SAP Integration
- Implement Bill Print Solution
 - Bill Management
 - Bill Print, Insertion, and Mailing

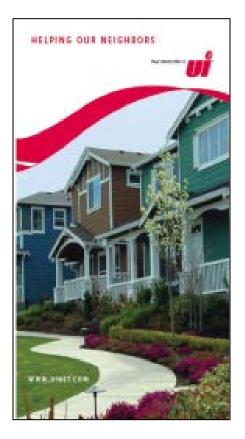

EZ Pay Project


• Utilization of online payment channels


Results

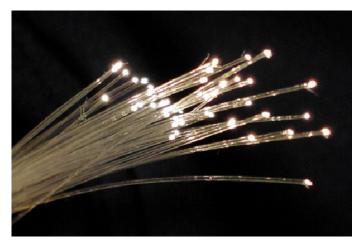
- Increase in registered "My Account" users
- Increase utilization of web/IVR

Online Payments											
Reporting Period: 09/29/2008 - 06/30/2011											
		2008	2009			2010		2011			
Payment Source	Count	Net Amount	Count	Net Amount	Count	Net Amount	Count	Net Amount	Count Total	Dollar Total	
IVR	14,948	\$4,050,491.51	98,514	\$25,567,704.31	135,121	\$35,344,180.21	79,517	\$19,281,901.92	328,100	\$84,244,277.95	
Non-Enrolled	4,722	\$1,255,491.97	20,992	\$5,584,262.81	21,176	\$6,964,032.04	8,619	\$2,459,799.76	55,509	\$16,263,586.58	
Enrolled	38,718	\$7,113,419.02	283,066	\$52,881,569.19	386,114	\$71,416,969.56	223,891	\$39,201,760.53	931,789	\$170,613,718.30	
Totals	58,388	\$12,419,402.50	402,572	\$84,033,536.31	542,411	\$113,725,181.81	312,027	\$60,943,462.21	1,315,398	\$271,121,582.83	

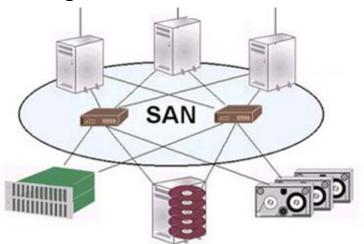


Customer Outreach

2011 Mailing Campaign



Financial Assistance packages mailed to **20,599** hardship customers

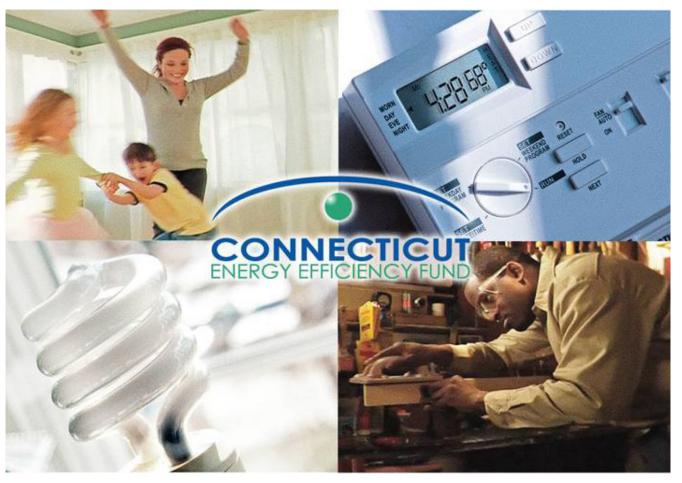


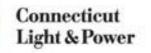
Fiber Optics

Technology

Advanced Mesh Meter Networks

DataPower Security Appliance





Connecticut's Energy Efficiency Programs are funded by a Charge on Customer Energy Bills.

The Northeast Utilities System

- Home Energy Solutions Income Eligible
- Home Energy Solutions Program
- Residential New Construction
- Residential HVAC Incentive Program
- SmartLiving[™] Center
- ENERGY STAR® Lighting
- eesmartsTM

Commercial & Industrial Programs

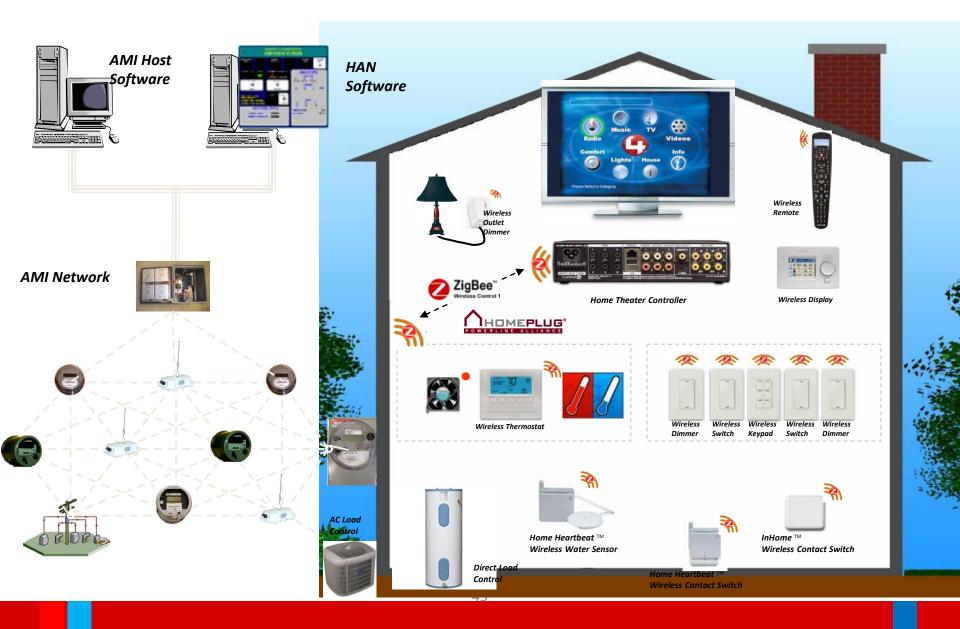
New Construction, Major Renovation & Equipment Replacement

Retrofit Projects & Small Business

Operations & Maintenance Projects

Retro Commissioning

Process Reengineering for Increased Manufacturing Efficiency


Loans & Financing

Energy Management

Partner with Our Customers

Help customers better manage their energy use

Electric Vehicles

and Chargers

Savings Are Significant Gas ≈ 11.2 ¢/mi Electric ≈ 4.3 ¢/mi Convenience is the key to success

Chevrolet Volt

- Battery Electric Vehicle

- 24 kWh battery, 100-mile range

- Charging: 20 hrs at 120V, 12A or 8 hrs at 240V, 15A

- Extended Range Electric Vehicle
- 8 kWh battery (usable), 40-mile range
- Charging: 8 hrs at 120V, 12A or 3 hrs at 240V, 15A

AeroVironment

Charge station

G.E. EVSE

ClipperCreek

Current Reality

Transformer Load Management

Hourly Meter Reads

Home Energy Management

Improved Outage Management **Customer Notifications**

Real Time Pricing

Real Time Energy Cost Presentment

Redesign Billing Statement

Virtual Metering

Integrated Energy Management

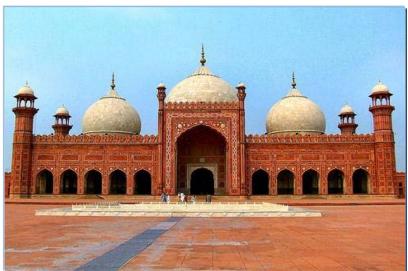
What is SMART

Partnership

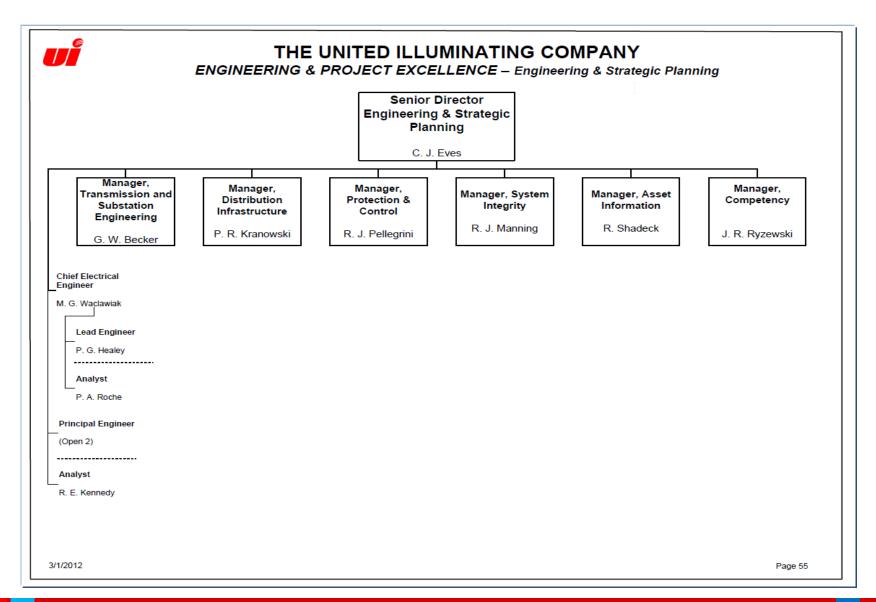
UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

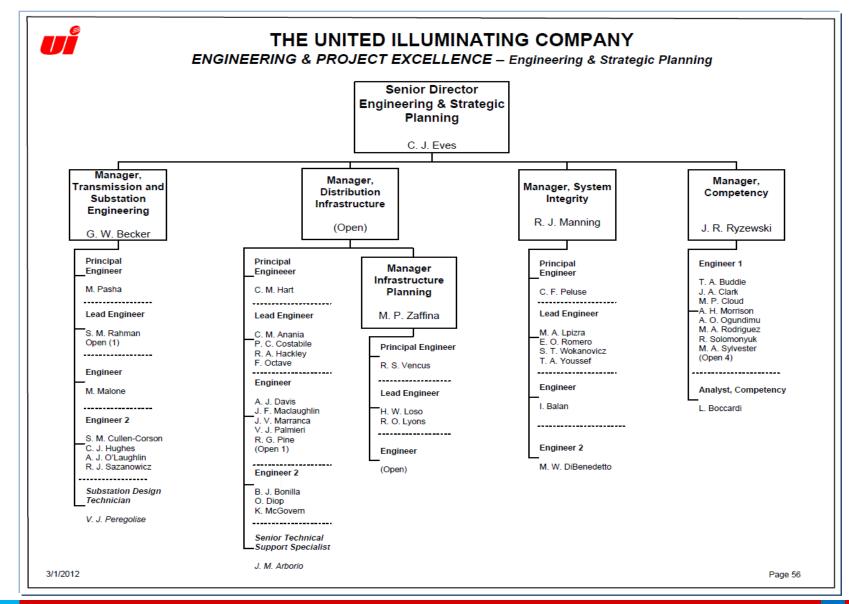
SYSTEM PLANNING PROCESS & PRINCIPLES By: Chuck Eves

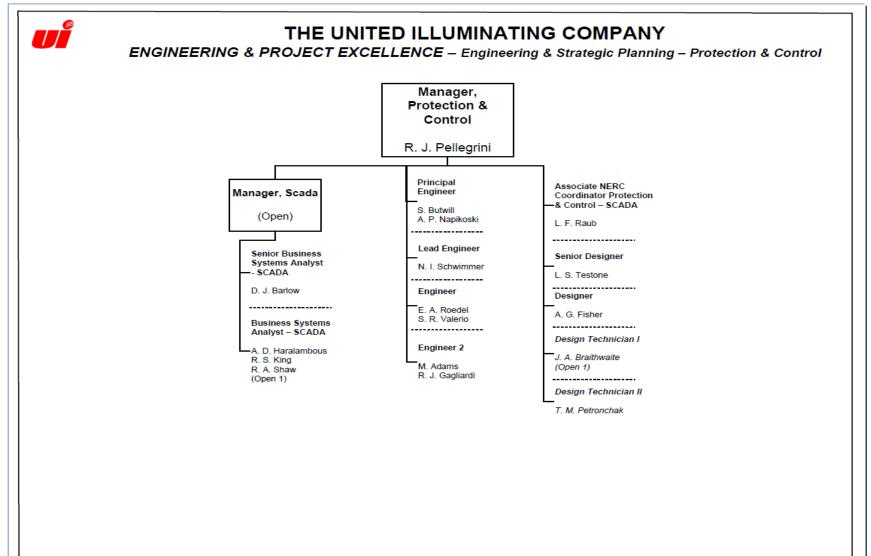
Sr. Director, Engineering & Strategic Planning

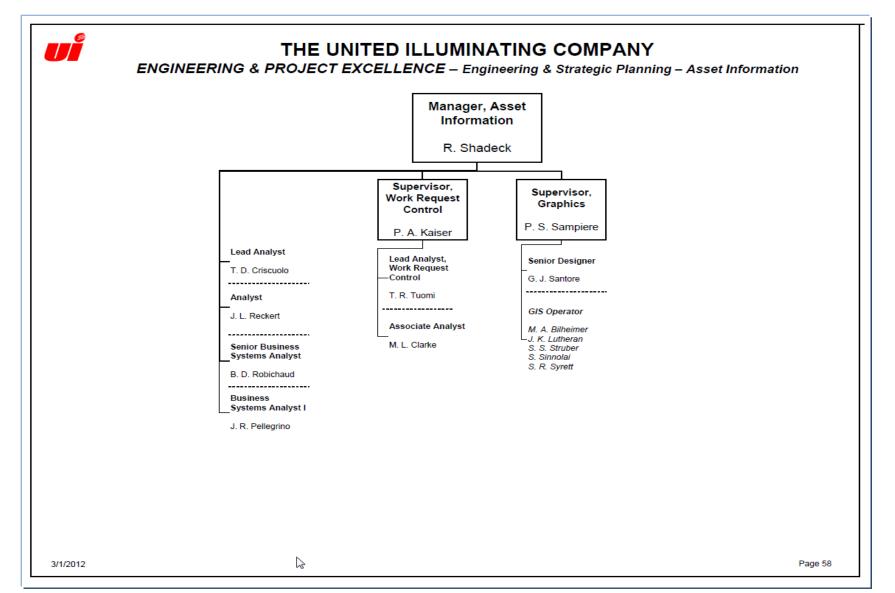


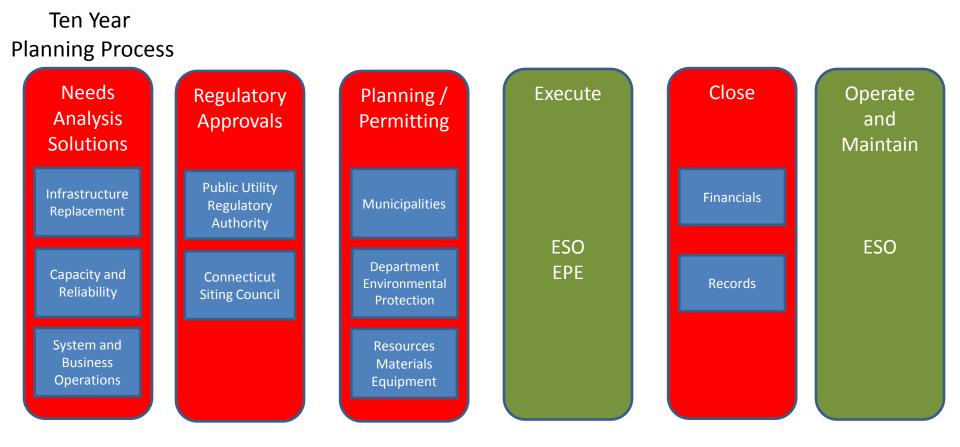
Welcome



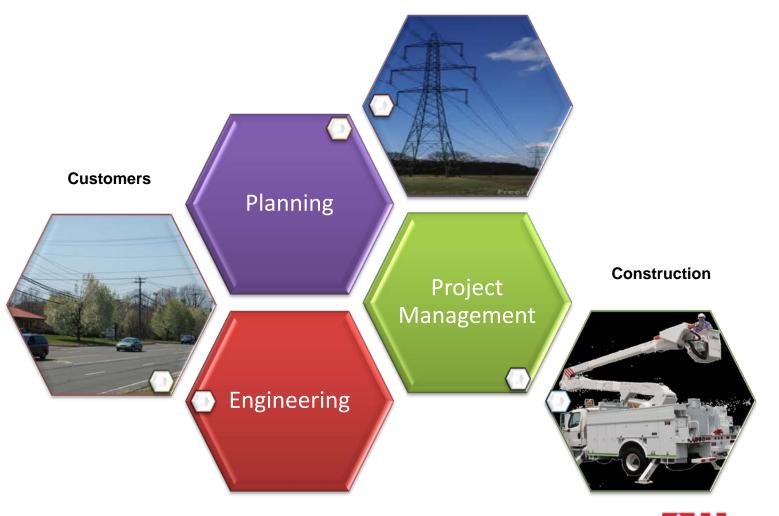








UI's Planning Process

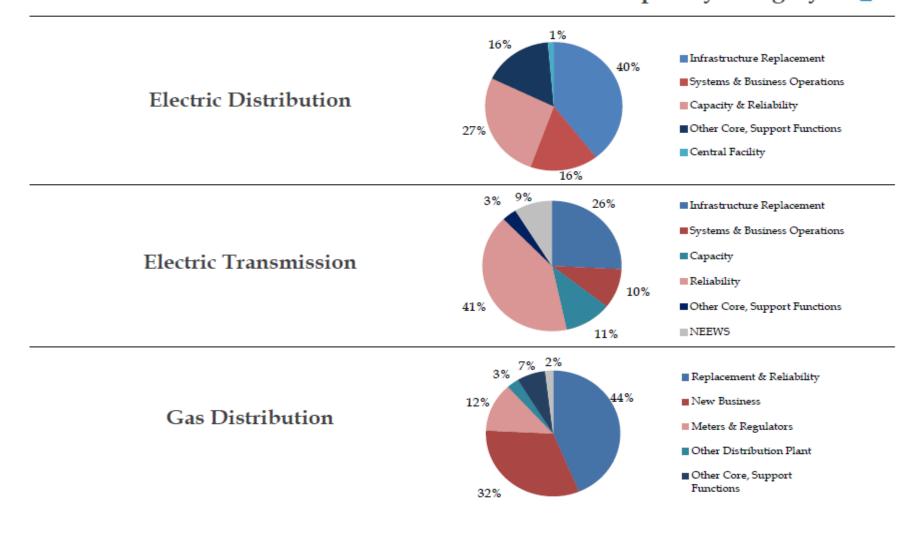


Collaboration

System

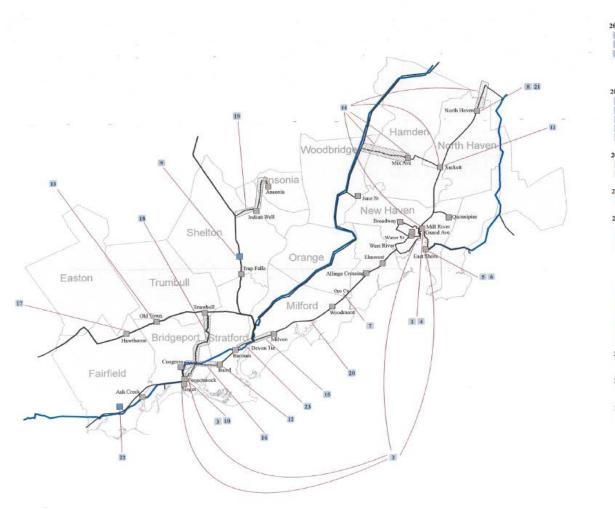
UIL 2012-2021 Capital Expenditure Forecast*

M																
	201	11A** 2012P		2013P		2014P		2015P		2016P		2017-2021P		Total 2012-2021P		
Electric Distribution	\$	170	\$	150	\$	125	\$	110	\$	113	\$	109	\$	574	\$	1,181
Electric Transmission	\$	60	\$	69	\$	64	\$	55	\$	130	\$	86	\$	169	\$	573
Total UI	\$	230	\$	219	\$	190	\$	165	\$	243	\$	195	\$	743	\$	1,754
Gas Distribution	\$	61	\$	76	\$	85	\$	106	\$	103	\$	97	\$	495	\$	962
UIL Corporate	\$	24	\$	41	\$	30	\$	14	\$	10	\$	12	\$	60	\$	167
Total UIL Capital	\$	315	\$	335	\$	305	\$	285	\$	356	\$	304	\$	1,298	\$	2,883


Identified projects with clear need

- □ Full 10-yr forecast for Gas Distribution CapEx
- IT-related shared services projects are in UIL Corporate

Total UI = 1,663 M Pak Rupees – Total UIL = 2,738M Pak Rupees



2012-2021 CapEx by Category

Transmission Projects 2012-2022

2012		
1	Grand Avenue 115 kV Switching Station Modernization	In-Service
2	ISO-NE Synchrophasor, Phasor Measurement Unit Installation	Construction
3	Pequonnock 115 kV Bus System Upgrades, Bay 1	Planned
	- Control Room' Relay Replacement	
	 115 kVBus System 63 kA upgrade Disconnect switch replacements 	
2013		
4	8300 Line Reconfiguration Project	Planned
5	East Shore 115/13.8 kV Substation, Distribution Capacity Upgrade	Planned
6	East Shore Substation, 115 kV Circuit Breaker and Switch Replacement	Planned
7	SCADA Master Station Replacement	Plaumed
8	North Haven Substation, Capacitor Bank TRV Mitigation	Construction
2014		
9	New Pootatuck (Shelton) 115/13.8 kV Substation	Planned
10	Pequonnock 115 kV Fault Duty Mitigation, Phase 1	Proposed
2015	5	
11	Sackett 115/13.8 kV Substation, Distribution Improvements	Planned
2010	6	
12	Baird 115/13.8 kV Substation Upgrade or Replacement	Concept
	Old Town 115/13.8 kV Substation Upgrade or Replacement	Concept
14	SWCT, New Haven Area 115 kV Transmission Upgrades	Concept
	 Glen Lake - Mix Ave 115 kV 1610 Line Reconductoring 	
	- Sackett: Phase Shifter Removal, 115 kV Capacitor Bank Replacement, Terminal Upgrades	
	 MixAve: 115 kV Capacitor Bank Addition, Terminal Upgrades. North Haven - Wallingford 115 kV 1630 Line Reconductoring 	
	- Grand Ave: 115 kV Capacitor Bank Addition	
15	SWCT, Devon Tie- Milvon 115 kV RR Line Reconductoring/Upgrade	Concept
	SWCT, Congress - Baird 115 kV RR Line Reconductoring/Upgrade	Concept
	SWCT, Hawthorne 115 kV Capacitor Bank (2) addition	Concept
	SWCT, Trumbull - Pequonnock 115 kV Transmission Upgrades	Concept
19	SWCT, Naugatuck Valley 115 kV Transmission Upgrades	Concept
20	FAC-008 Long Term Remediation Project (2016-2022)	Concept
201		
21	North Haven 115/13.8 kV Transformer Replacements (LTC's)	Concept
201	9	
22	New Fairfield 115/13.8 kV Substation	Concept
202		
	SWCT, Barnum - Devon Tie 115 kV RR Line Reconductoring/Upgrade	Concept
	State Contract Contract Contract State Contract State Contract State Sta	

Electric Distribution Examples of Projects

Central Facility – UI Office & Operations Building

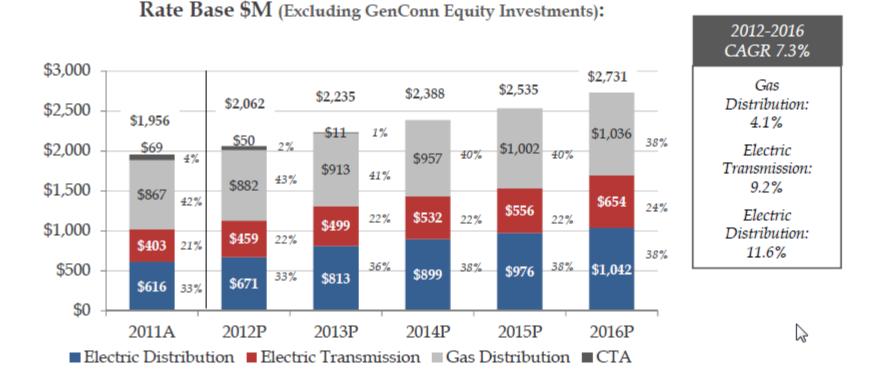
- Consolidate all UI "Work Centers" onto a single site referred to as the Central Facility
- Under construction
- Planned inservice 2012

Network Infrastructure Replacement

- Addresses aging network infrastructure to reduce hazards associated with equipment failure
- In progress
- Annual program over 10 years
- ~ \$5M per year

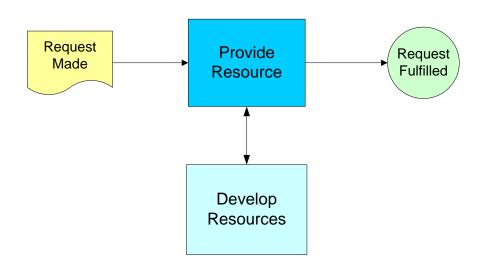
Splice Chamber Remediation

- Rebuild deteriorated underground splicing chambers
- In progress
- Annual program over 10 years
- ~ \$8M per year

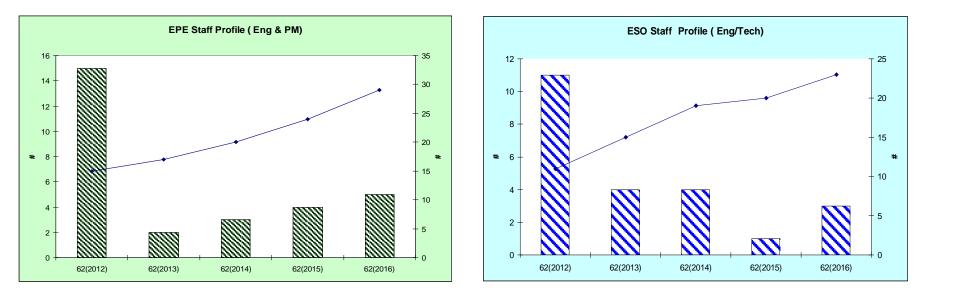

Distribution Transformer Replacement Program

- Infrastructure program to replace transformers due to poor physical condition, inadequate capacity, that could potentially contain levels of PCBs
- In progress
- Annual program over 10 years
- ~ \$7M per year

2012-2016 Average Rate Base Forecast

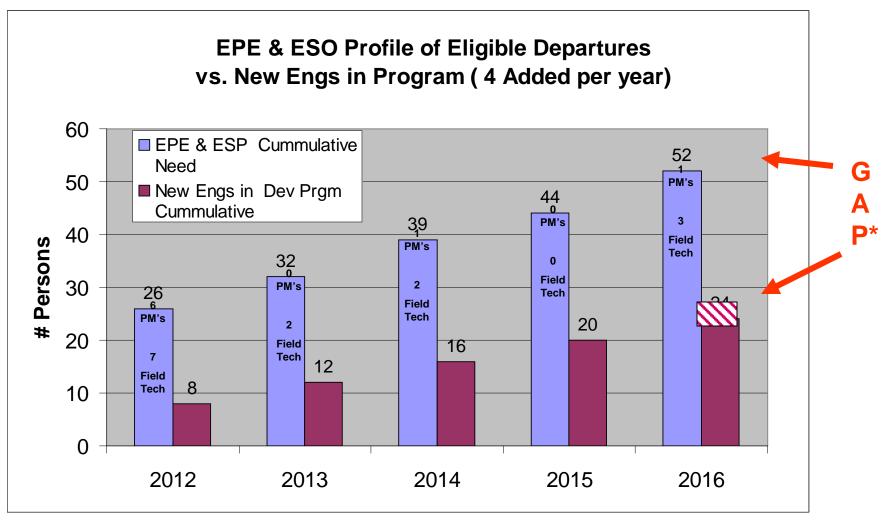

- EPE & ESO Aging Workforce Profile
- Current Programs
 - Internship
 - New Engineer Development
- Recommendations to Close the Gap

EPE Competency - Mission

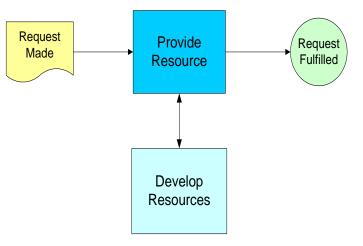

Our processes help provide and develop necessary resources to support the 10 Year Plan and sustain the operational needs of the company.

EPE – ESO: Aging Workforce

• The charts portray the number of persons who have reached the age of 62 as of that year. These positions require a degree and are not union.


• The line and scale on the right show the cumulative number of persons who have reached the age of 62 over the five year period.

New Engineer Development Program Resource Projection & Gap



Providing A Trained, Competent Workforce

We have established Programs to attract and develop new talent:

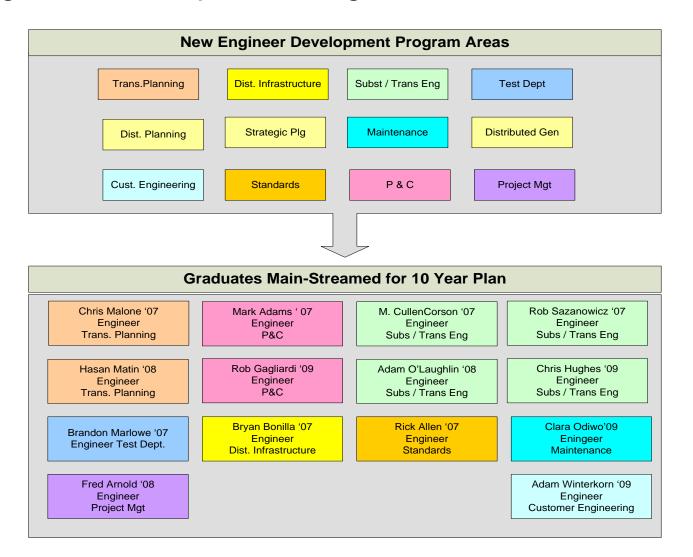
- I. External Recruitment
 - The Marketplace & Graduating Seniors
- II. UI's Internship Program
 - 11 out of 17 Engineering positions were
- III. Engineering Development Program
 - 14 have 'graduated' into the mainstream

Buffalo* Clarkson* **Gateway*** **Fairfield University*** WPI* Villanova NYIT SUNY UNH Manhattan College **Central CT State** University **UConn**

JASPERS

University of New Haven

University of Connecticut

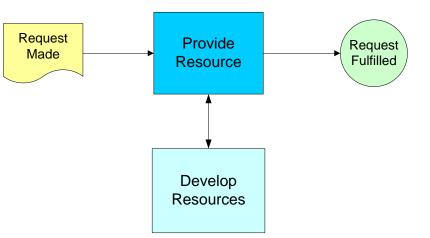


New Engineer Development Program: Resources for 10 Year Plan

Our Challenge: Close the Gap

We need to accelerate and expand our:

- 1. Recruitment
 - Project managers and "second career" engineers
 - Engineers in targeted universities and colleges
- 2. Internship / Scholarship Program
 - Recruit Local and Regional talent
 - Include UNH
- 3. New Engineer Development Program
 - Increase from 4 to 6 per year
 - Build upon our success

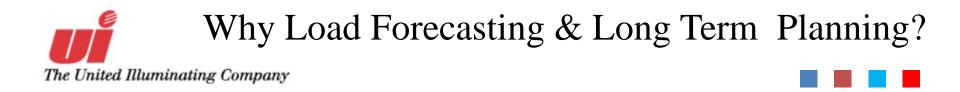


The Good News!

We have:

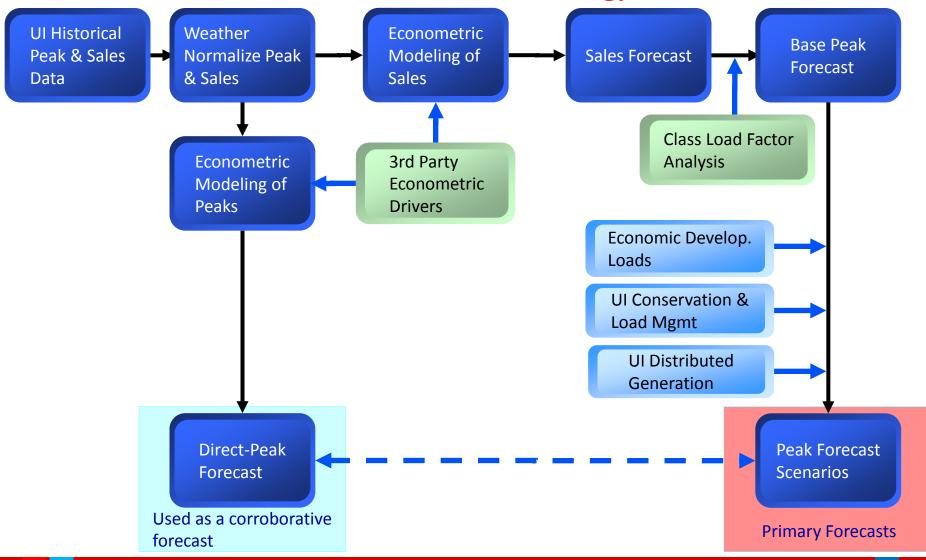
- 1. Proven processes that provide and develop resources to support the 10 Year Plan.
- 2. Engaged Employees
 - Challenging Work
 - Focused Development
 - Advancement Opportunities
- 3. Commitment at all levels
 - Engaged Management & Supervisors
 - Implemented 2010 Adjustment Study
 - Aligned to UIL Scorecard, the 10 Year Plan and our core business.

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

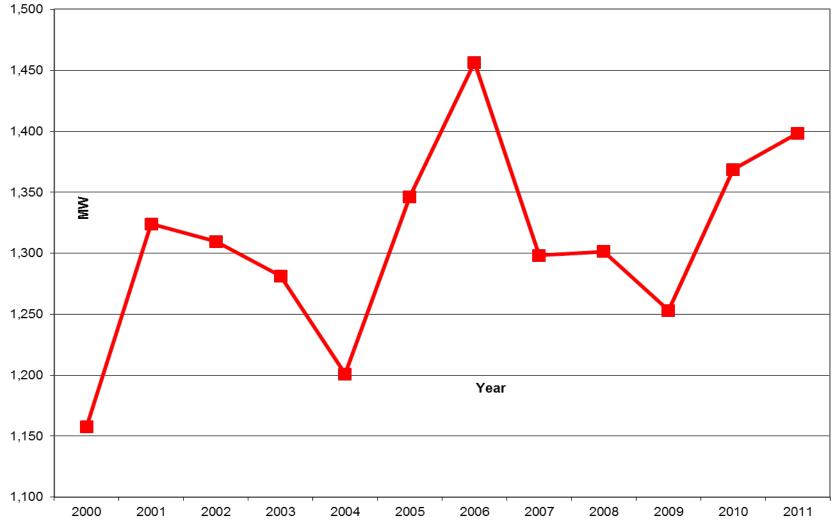

LONG TERM PLANNING AND POWER REQUIREMENTS

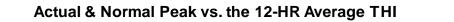
By: Bob Manning, Manager

System Integrity

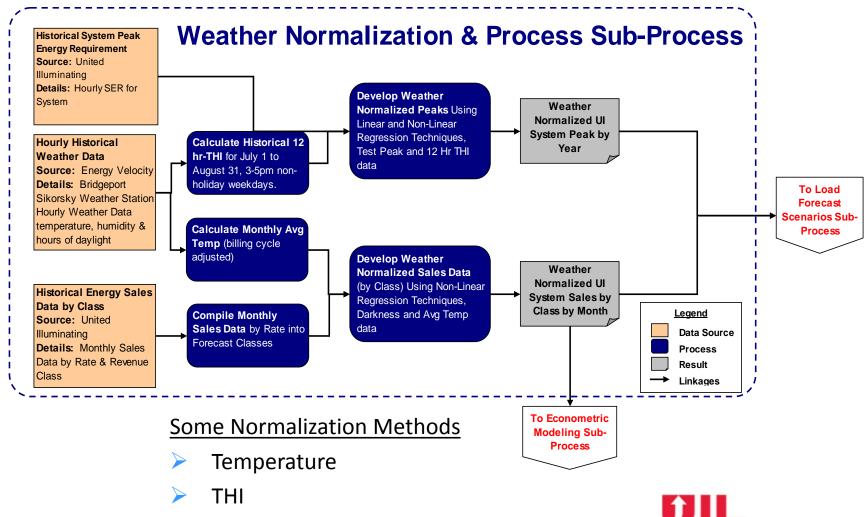

- Analyze Capacity of Existing Substations
- Input into the Ten Year Plan
 - Financial Forecasting
 - Manpower Forecasting
- Meet Required In-Service Dates of Multi-Year Projects
 - New Substations
 - Substation Expansions
- Meet Regulatory Requirements
 - ISO-NE
 - CSC

Forecast Methodology


Load Forecast Methodology


Why Weather Normalize?





Weather Normalization and THI

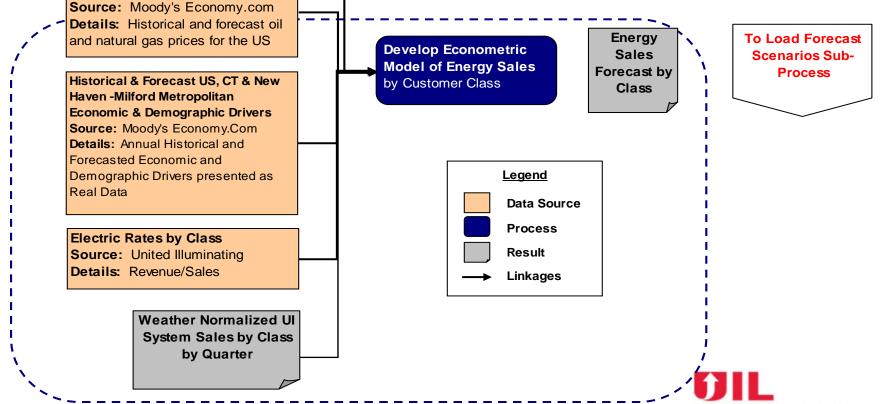
UIL HOLDINGS CORPORATION

> 3 Day Weighted Average

Forecast Classes

Energy Sales Forecast Classes

- Residential
- Small Commercial
- Mid Commercial
- Large Commercial
- Mid Industrial
- Large Industrial
- Commercial Area Lighting
- Industrial Area Lighting
- Street Lighting



Historical & Forecast US Oil &

Natural Gas Prices

Econometric Modeling

Econometric Modeling Sub-Process

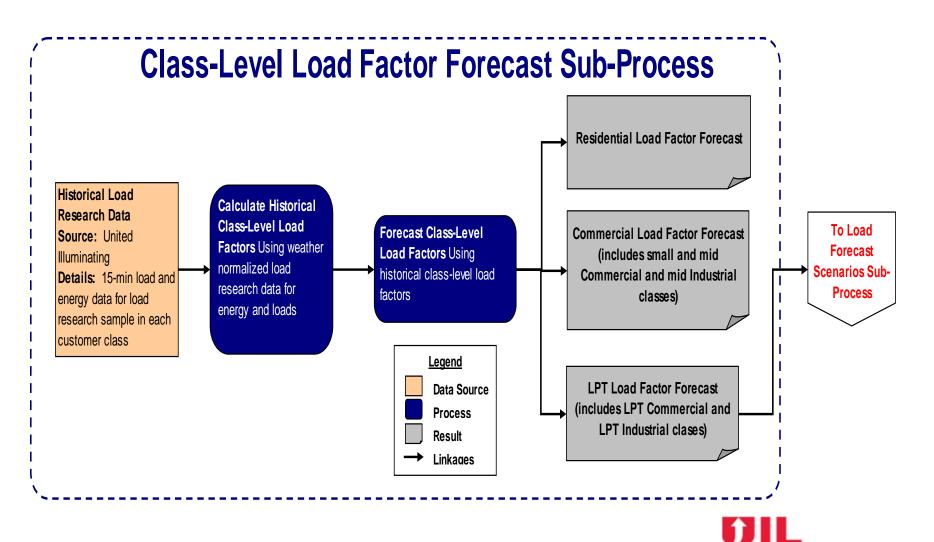
From Weather Normalization Sub-Process

UIL HOLDINGS CORPORATION

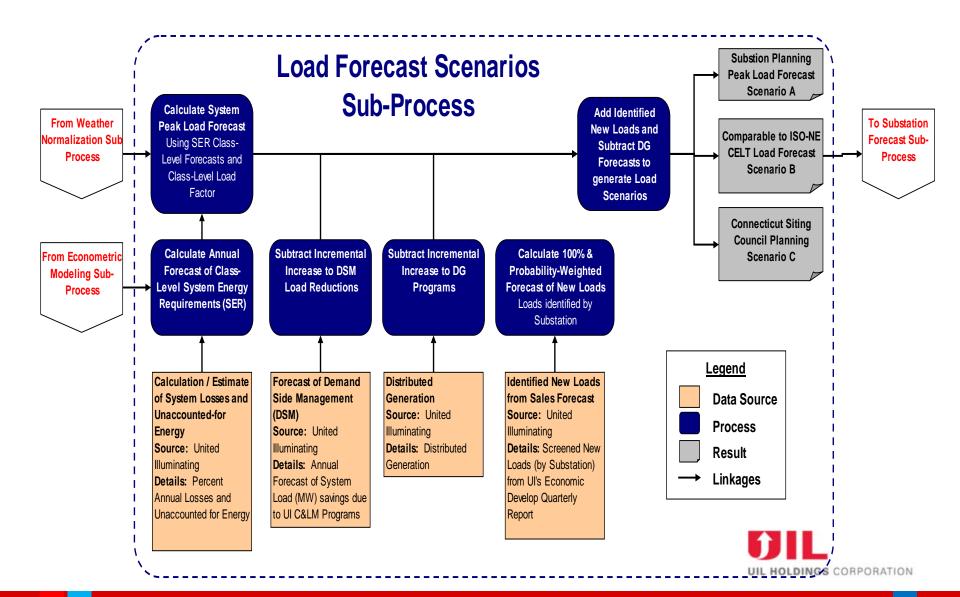
Economic and Demographic Variables

2012 Forecasting Models

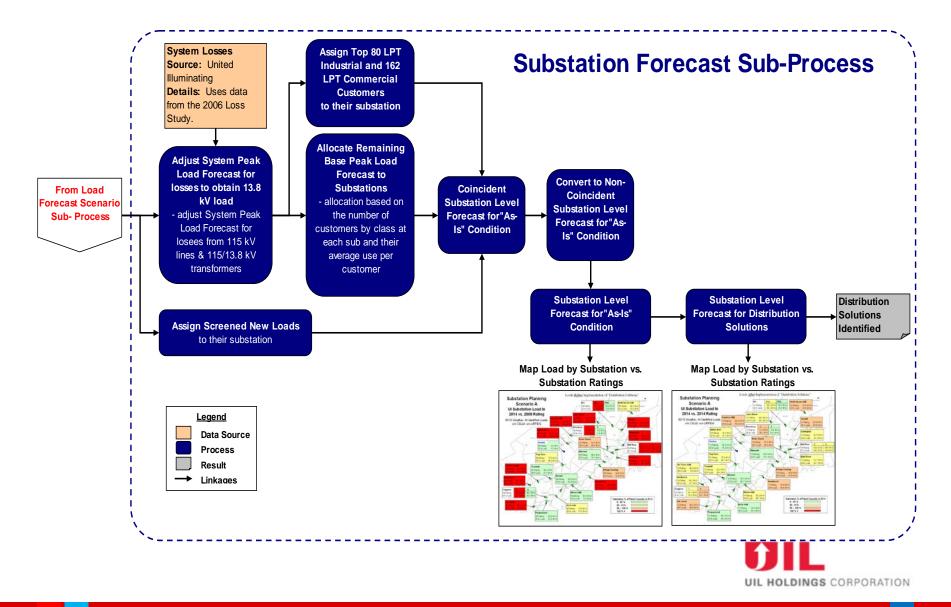
Forecast Variables


- NH Civilian Labor Force
- CT Retail Sales
- CT Single Family Housing Starts
- U.S. GDP
- CT Bankruptcies: Bus-Ch-13
- CT Employ: Retail Trade
- NH Population
- U.S. Natural Gas Price

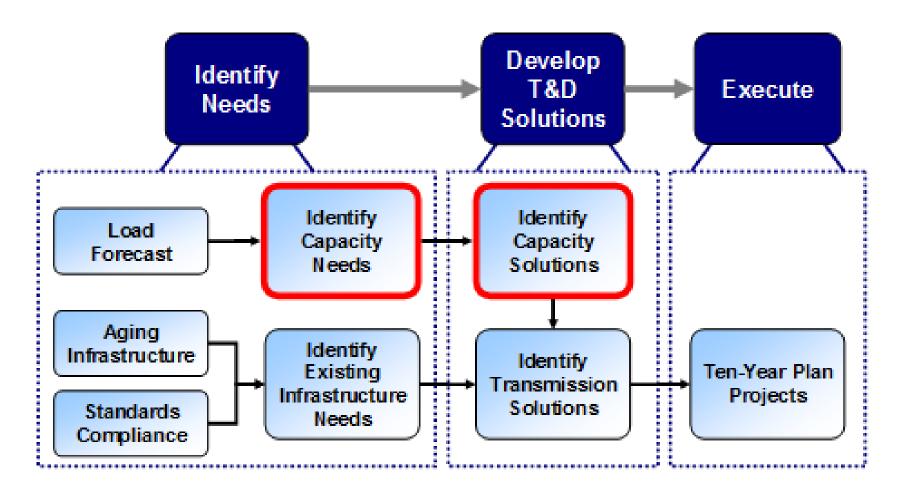
Variables Obtained from 3rd Party Sources Tested for Lags – Up to 4 Quarters


Class-Level Load Factor Forecast

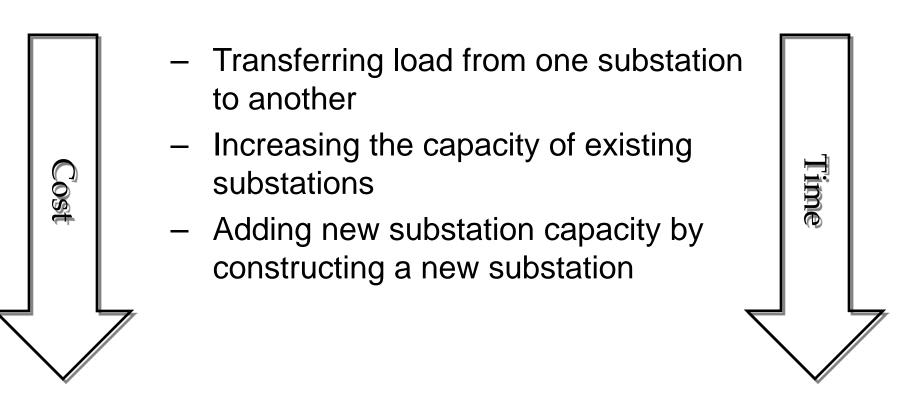
UIL HOLDINGS CORPORATION



Load Forecast Scenarios



Substation Capacity Analysis


Needs and Solutions

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

OVERHEAD & UNDERGROUND DISTRIBUTION DESIGN PROCESS & CRITERIA

Paul Kranowski, Manager

Distribution Infrastructure

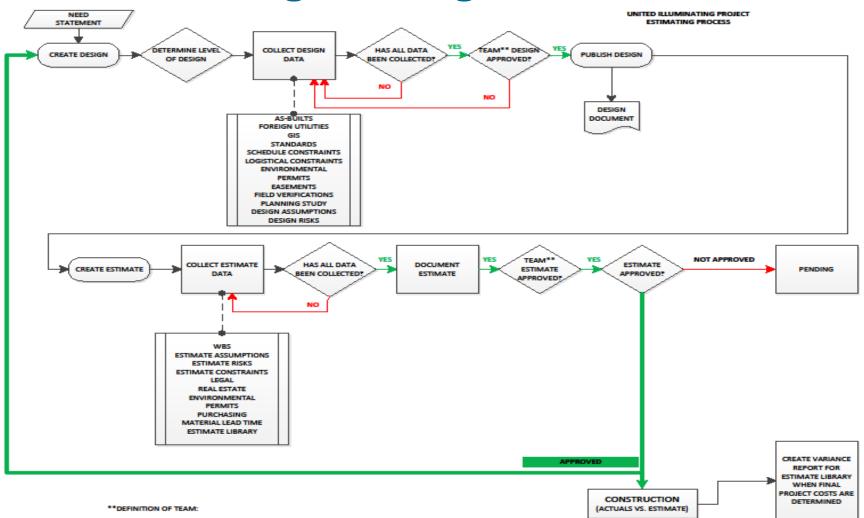
Department Management Principals

Balance Professionalism Growth Comunication

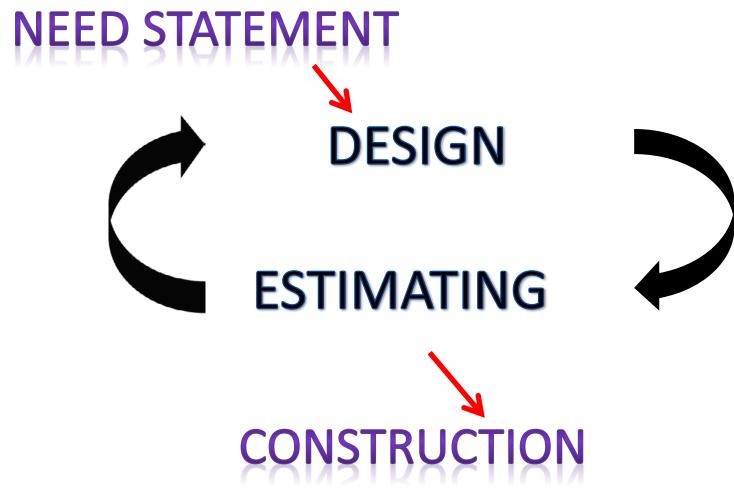
Chris Hart Principal Electrical Engineer

Claudio Anania Lead Civil Engineer

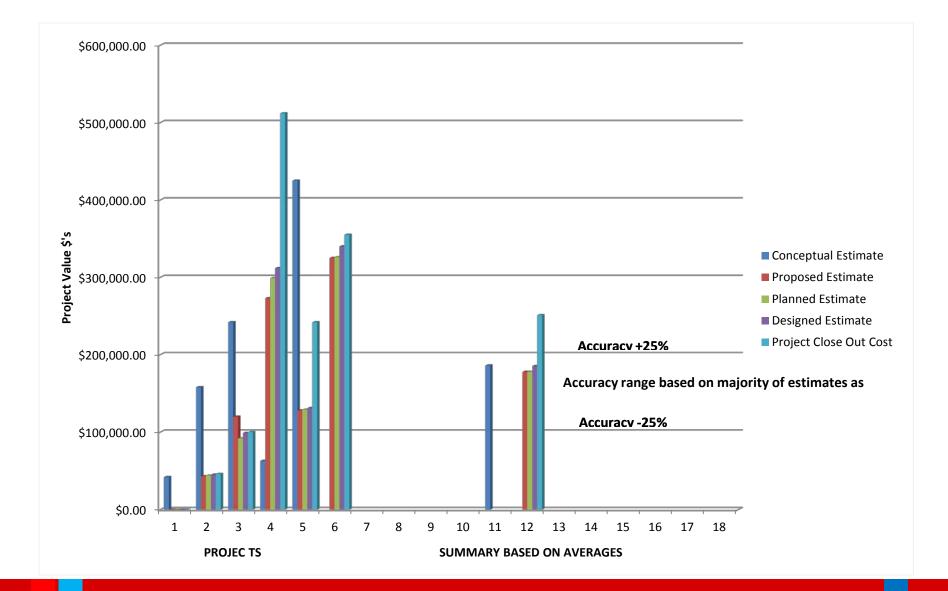
OUR MISSION


Operate in a Safe & Efficient Manner To:

- Improve Reliability Maintain System Integrity
- Support the Ten Year Plan
- Conduct Need Assessments and Solution Studies
- **Provide Vetted Estimates**
- Engineer Quality Design
- Construction Support
- Supply Electrical-Civil Expertise when required



Estimating & Design Process Flow



SCHEDULING PRIMAVERA

Welcome to Primavera - Microsoft Internet Explorer	
Ele Edit View Figuerites Iools Help	AT.
	Version 6.2 (12-12-2008:16:02) OBFUS
Login	
Username	
Password	
Login Change Password	
Database primaçat	
Language English 💌	
Copyright © Primavera 1999-2010. All rights reserved.	
Done	V Second Intranet

SCHEDULING PRIMAVERA

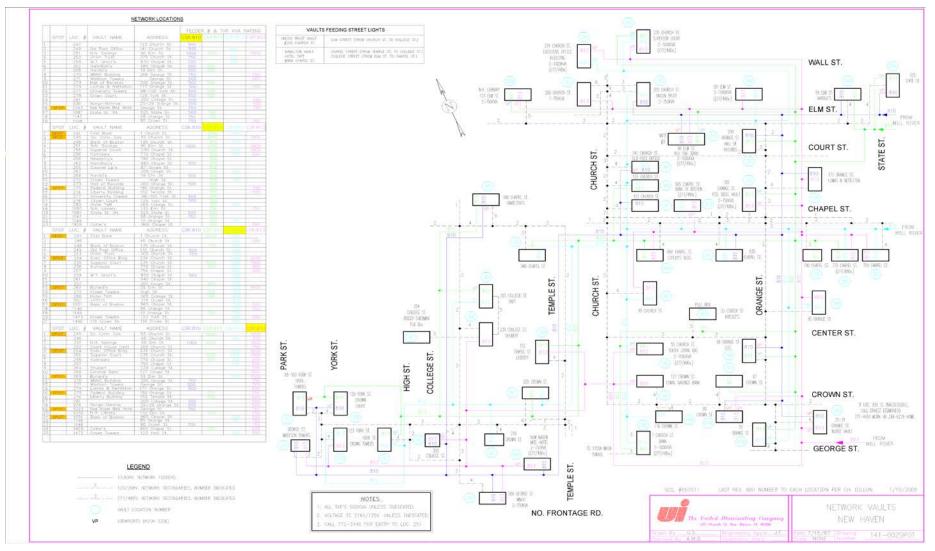
Default Dashboard: Primavera will open to your default dashboard, designed to provide information needed to manage your resources.

- Open Requests for Resources
- Resource Team Summary
- Project Schedules
- Resource Analysis Chart

mavera - Dashboards - Microsoft Internet Explorer						
Edit yew Figuarites Tools Help						
Back + 🜍 - 💌 🗟 🏠 🔎 Search 👷 Favorites 🍕	8 🖉 - 🗟 🕤	. 🛍 🗹	2			
nss 👔 http://uxpv2:9081/primaveraveb/action/deshboards						×
PRIMAVERA®P6						Print Help Preferences L
🕽 Dashboards 👻 🍖 Portfolos 👻 📇 Projects 👻 🉈 Re	esources 🔻 🗏 Admir	nistration				
onal Workspace CF Dashboard Dist. Design Enginee TD Program M	Ignt Customer Field Servi.	Construct	ion Resourc			
ist. Design Engineering and Al Collapse Al Customize					Pitter by Pr	ortfolo: TDPHO 10 CapEX
Open Requests for Resources			7 10 8	Resource Team Summary		7 10 /
Customize			^	Select a resource team:		
Organized by: TDPHO 10 CapEX by Dist. Design Engineers				Dist. Design Engineers	E-mail resource team	
Name	11-1-1	fed Units	Staffed Units	Resource	Primary Role	Active Projects
Barre Bistribution Design Engineer.		0,112h	3.650h			
	,	360h	1,795h	Anania, Claudio M.	Distribution Design Engineer.	0
Combined New Haven PKL Removals Project D - Mark III Replacement Repair Model		100h	0h	Arberie, Jacob M.	Distribution Design Engineer.	25
D - Mark III Keplacement Keplan Model		2,800h	Oh	Bonilla, Bryan J.	Distribution Design Engineer.	7
D - Step Down Bank Conversions D - Ansonia Substation - 13.8kV Bus Addition		650h	0h	Brickett, Isaac	Distribution Design Engineer.	11
D - Seckett Substation - 13.8kV Bus Addition		Oh	Oh	Costabile, Peter C.	Distribution Design Engineer.	11
Yale Prospect Canal Lock (PCL) Project II		160h	Ch	Davis, Andre	Distribution Design Engineer.	22
Tale Sterling Power Plant (SPP) CoGen 4th Feeder II		160h	Oh	Gagliardi, Robert J.	Distribution Design Engineer.	0
D - State 83 - 247 Rt. 1 @ High St.		60h	Oh			15
D - Sentinel Phase 2 Working WJC		Silk	1.848h	TREAST, NOTION	Distribution Design Engineer.	
T - Quincipiac CB Replacement		Oh	Ch	Hart, Christopher M.	Distribution Design Engineer.	21
Yale Ashmun Projects #1 - #4 Feeder Load Growth II		160h	Oh	Lupone, Salvatore V.	Distribution Design Engineer.	10
D-East Shore Circuit 1707 Backup Relief		Oh	oh	Page: 1 of 2 [Next >>]		
D - Reconstruction of Quinnipiac Avenue		Oh	Oh			
D - State West Haven Train Station		252h	Oh			
D - Mix Avenue Circ. 1685 Load Relief		Oh	8h w			
R Project Statistics			7 14 8	Resource Analysis Chart		7 19 2
Customize Display ③ List ◎ Group				Resource Team Dist, Design Eng	gineer Group by Project	
egend : 🝘 High 🔥 Medium 🔕 Low					ocation for Dist. Design Engineers by Project	
	roject Owner Start	Finish	Project Score	~	12/1.09 to 4/6/10	
TDPMO 10 CapEX	1/19/04		0	1200-1		
(2010 Construction) T - State - West Haven RR Station	1/1/09	10/12/10	0			
(Blanket) D - Leaking Splice & Cable Repair	12/31/08	1/4/10	0			
D 160983 - Shelton Substation	9/3/07	5/1/12	0	1,000-		
D 161942 - BROADWAY SUBSTATION	9/16/08	5/23/12	0			
D 162160 - Union Ave Substation Project	1/19/04	6/24/11	0	750		
D 164468/162014 - Grand Ave - Pre-Baseline	9/3/07	8/29/12	0			
2010 Ductine Rebuild	7/27/09	7/12/10	0	2		
Academy Hill SDB 01/05/10	9/22/08 8/17/09	5/21/10 1/18/10	0	500-		
Barrum Ductine Extension Page: 1 of 17 (Next >>)	e/17/09	1/10/10				
appe:1 of 17 (Next >>)				290-		
Communication Center			7 14 8	Schedule Performance		7 14
Communication Center			7 83 8	3 Schedule Performance		

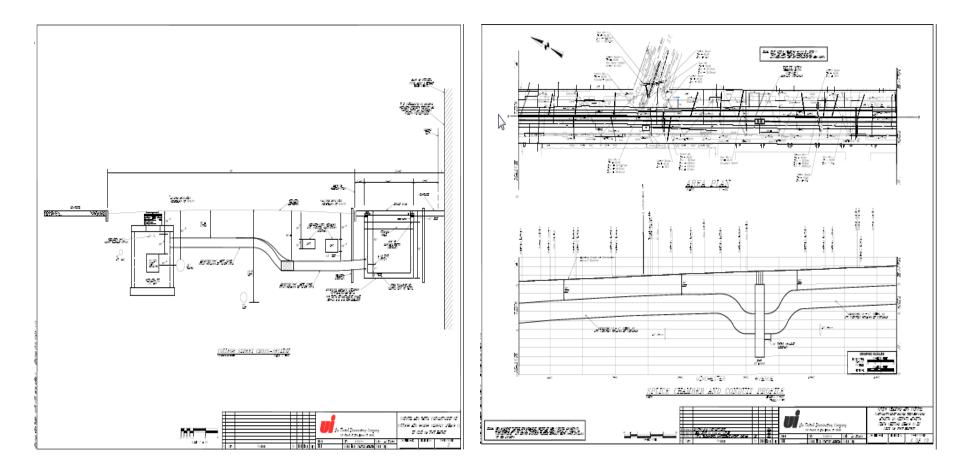
Electric Design Engineering @ UI

PORATION



Civil Design Engineering @ UI

Civil Design Engineering @ UI



Civil Design Engineering @ UI

Electric & Civil Design Engineering @ UI

Part Time Weathermen

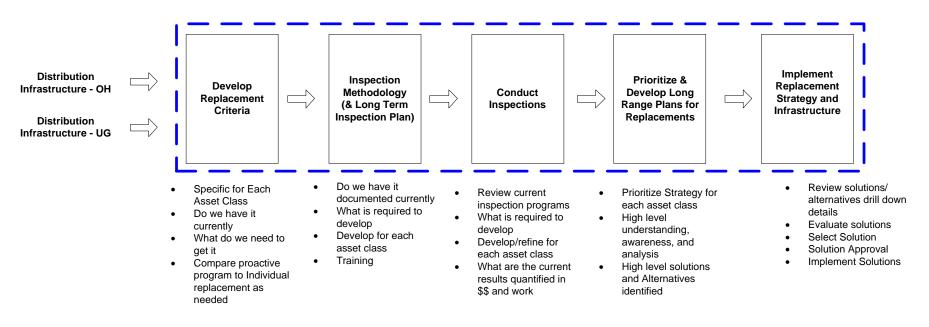
Every Day Provides Challenges and Surprises

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

DISTRIBUTION INFRASTRUCTURE PLANNING

Robin Lyons, Lead Engineer

Infrastructure Planning


Distribution Infrastructure Planning – Overview

- This area develops short and long range plans to meet the infrastructure replacement requirements of UI's Distribution Ten Year Plan.
- The Infrastructure Planning (IP) Engineer has a central role in developing, planning and executing the strategic replacement of UI's aging distribution infrastructure.
- The Infrastructure Planning (IP) Engineer works closely with the Distribution Standards, System Integrity Planning, System Maintenance and Project Management areas to develop, plan and coordinate the inspection / replacement criteria, condition assessment methodology and analysis of selected types of electric equipment such as poles, splice chambers, vaults, cable, transformers, switchgear, etc.

Distribution Infrastructure Planning Replacement Process

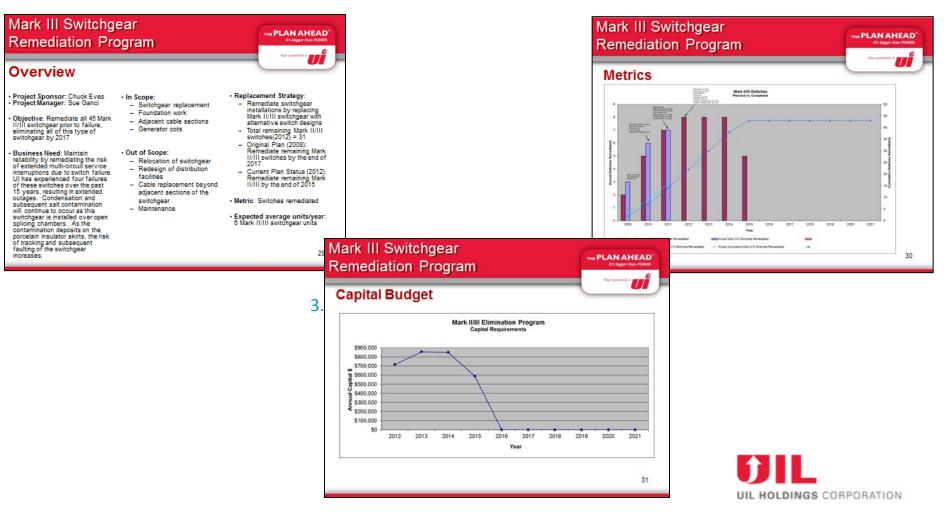
Note: Distribution Asset Classes are at various stages in this process

Proactive Distribution Replacement Programs

Cage Distribution Substation Distribution Transformer Mark II/III Switch Network Protector Network Transformer Overhead Aerial Cable PKL Switch Service Connectors* Splicing Chamber/Ductline Streetlight* Underground Cable Vault Wood Pole

* Recently completed programs

The <u>Distribution Ten Year Plan</u> documents and projects capital expenditures associated with the proactive replacement programs over a "rolling" ten year period.



2. Metrics

Each program is documented in three parts:

1. Program Overview

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

UI DISTRIBUTION STANDARDS

Mike Zaffina, Manager Infrastructure Planning

HOLDINGS CORPORATION

What we do:

- I. Develop distribution construction and design standards for UI's electrical overhead and underground lines operating to 15,000 volts for use by the engineering and construction workforce.
- II. Write engineering specifications for electrical equipment.
- III. Create material specifications for various items; such as concrete products, poles, transformers, cable, etc.
- IV. Serve as technical advisors (SME) for the application of electric equipment such as cable, transformers, switchgear, etc. to the engineering and construction workforce.
- V. Follow updates in research and developments taking place in the power industry (Smart Grid, etc).
- VI. Conduct root cause analysis on distribution equipment failures.
- VII. Participate and represent UI on Industry associations (IEEE, ANSI, etc).

Why do we need Standards?

- Safety of personnel and public
- Lower cost
- Uniform practices enhance productivity
- Conform to state & federal mandates

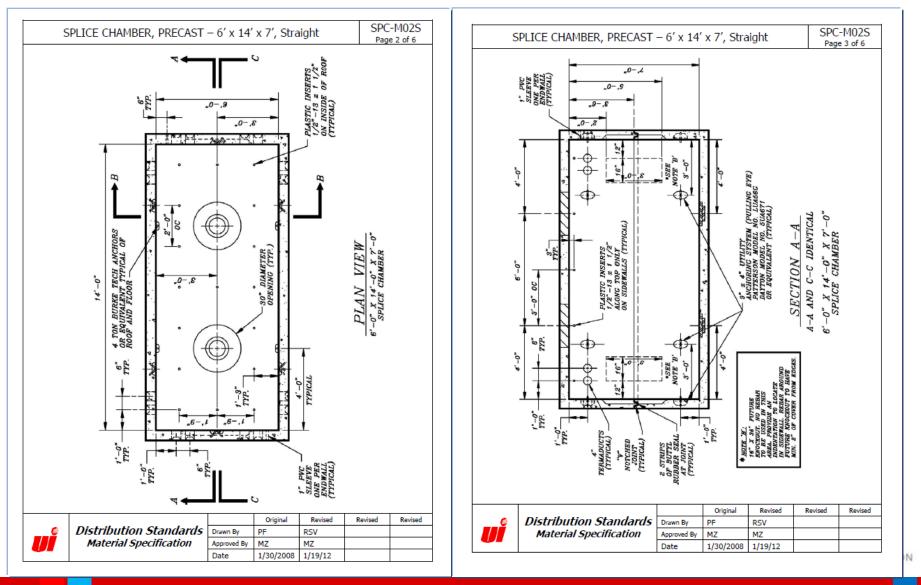
Construction Standards

- Tells you how to build and/or design it.
- Adherence to the National Electrical Safety Code (NESC) provides minimum safe clearances for the public and safe working clearances for the workers.
- Determines the most suitable means to provide a safe and reliable means to serve electrical loads.
- Considers required voltage, current and fault duty ratings.

Example Construction Standard – Pole Top

07/30/12

Page 36 of 39


Material Specifications

- Only required when an item isn't readily available via a catalog number
- Explains in detail the physical dimensions, type of material and strength requirements
- References to National Standards may be added (ASTM, ANSI, AASHTO, UL)
- Usually used for structures and hardware

Example Specification – Splice Chamber

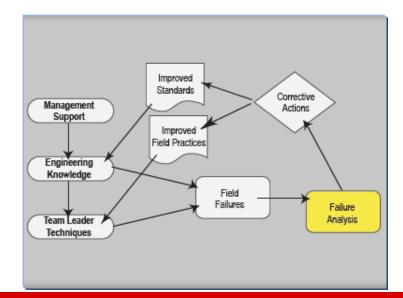
Distribution Equipment Specifications

- Similar to Material Specifications but are far more encompassing
- Covers transformers, cables, switchgear, radios, capacitors, oil etc.
- Items purchased to national standards; ANSI, IEEE, AEIC, ICEA

Distribution Engineering Guides

These documents are intended to provide guidelines for the orderly development of overhead and underground systems design and construction, to meet the needs of our customers with an acceptable level of safety, reliability, flexibility, and economics.

Example Topics Covered:


- Overhead Distribution Design
- Underground Design
- Grounding and Bonding
- Voltage Regulation

Failure Analysis of Distribution Equipment

- Critical step toward maintaining and improving reliability.
- Provides a thorough understanding of what is failing and how to improve:
 - Standards, specifications and product selection
 - Field Practices
- Failure Analysis reports central repository (UI UER)



The United Illuminating Company

Example Investigation – Heat Applied Splice Failure

Other Document Types – References

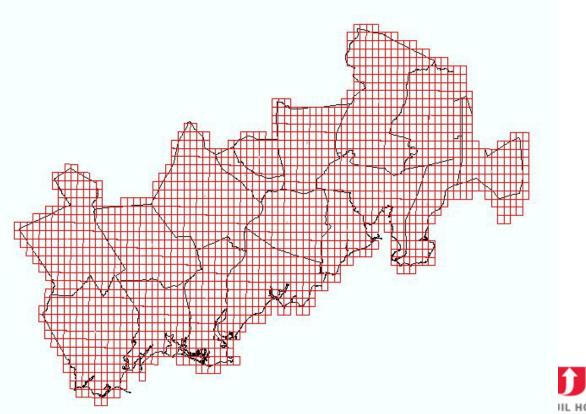
- National Standards Library: ANSI, IEEE, AEIC, ICEA (current and historical)
- Equipment Catalogs and instructions docs (current and historical)
- Old UI Standards and Specs (historical)
- UI and Industry Engineering and research studies (current and historical)

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

SYSTEM TOOLS – GIS MAPPING OF DISTRIBUTION NETWORK

Peter Sampiere, Supervisor

GIS


- Background
- Technical Details
- User Community
- Work Examples

UI - GIS

UI's GIS started as a mandate from the DPUC in 1985; the regulatory body wanted all of our assets stored in an electronic database.

Current GIS

- •ESRI ArcGIS/ArcMap
- Telvent's ArcFM 9.3.1*
- Oracle 10G
- Citrix
- ArcView 3.3 (GIS Lite)

* - ArcFM is a GIS add-on that is tooled specifically for use by utilities. It allows users to trace circuits using connectivity, and uses a tool called feeder manager which makes certain changes to the data programmatically. It also comes with a feature called "Map Books," which allows us to better organize and print our standard map products.

- UI's GIS System is an As-Built, Normal Operating Condition, database. It is updated on a continuous basis. Extracts from our GIS are used in other applications, such as OMS, GIS Lite, and CYME.
 - OMS is our Outage Management System
 - GIS Lite is our GIS viewing tool, used primarily by our engineers
 - CYME is a circuit analysis tool used by our planning area

Every night, Customer data is fed to our GIS from SAP, this information is then linked to our service points.

UI - GIS

Current Users

- 5 Full Time Editors
- 22 Concurrent ArcView Licenses

Our GIS is used by:

- Engineering Groups
- System Operations
- Maintenance
- Planning
- Construction
- Storm Restoration
- Lighting.

- Our various Engineering groups use GIS to reconfigure or design electrical circuits, using data extracts as well as maps.
- System Operations uses GIS extracts to populate the data in their OMS (Outage Management System), as well as paper maps as a backup system. The extracts for OMS are updated nightly.
- UI's Maintenance Department uses GIS for Vegetation Management, Transmission Line Inspections, and Splicing Chamber Inspections. They also use data extracts, such as a cable miles report, and custom tree-trimming maps.
- The Planning Area uses GIS to map out and plan improvements to select circuits in our system. They take circuits extracted from GIS, and import them into our CYME circuit analysis application.
- The Construction area uses GIS maps for Work Requests and Field Inspections.
- Storm Restoration uses GIS extracts through the OMS system, as well as Storm Patrol Maps for our Damage Assessment Crews to take into the field to identify damaged equipment for our repair crews.
- Our Lighting Group can now use GIS to find Streetlights and Private Area Lights that we are billing, since all of our Lights are now in GIS.


UI uses Telvent's ArcFM, which is ESRI's ArcGIS customized for utilities.

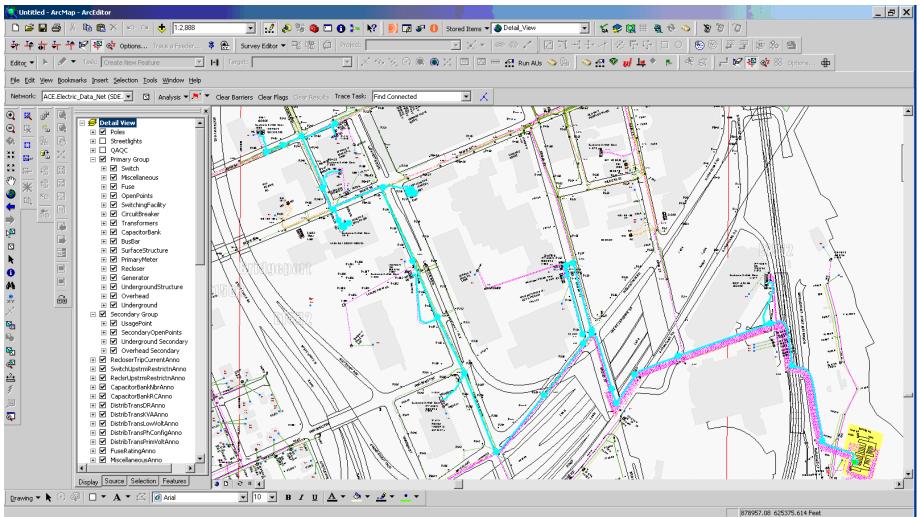
123		N	1 = []
Untitled - Arcl			- 🗆 ×
) X 🖻 🛍 X い つ 🔶 1:332,893		
* * * *	- 🌴 🖗 🍄 🏘 Options Trace a Feede	r \$ & Survey Editor ▼ 唯 曜 @ Project ダイ 空 栄 / 図 ゴ ゴ ナ オ 冬 野 ぴ ロ ○ 199 89 罕 望 ゆ ぬ 雪	
Edito <u>r</u> 🕶 🕨	🖋 👻 Task: Create New Feature	🝸 🖬 Target: 📃 🗡 多 茨 ④ @ 英 🎟 🖂 🛲 🕂 Run AUs 🤏 階 🧐 🛠 🌒 📮 🕈 🖡 🖉 名 🖃 🖉 🧛 🐼 Options 🕯	₽
	v <u>B</u> ookmarks <u>I</u> nsert <u>S</u> election <u>T</u> ools <u>W</u> ind	low Help	
Network: ACE.Electric_Data_Net (💌 🔟 Analysis 🗸 👻 Clear Barriers: Clear Flags: Clear Results: Trace Task: Find Common Ancestors 💌 📈			
ĬŸŸ\$			
Drawing 🕶 📐	🗇 🥥 🗖 🗖 🕶 A 👻 🗖 Arial		

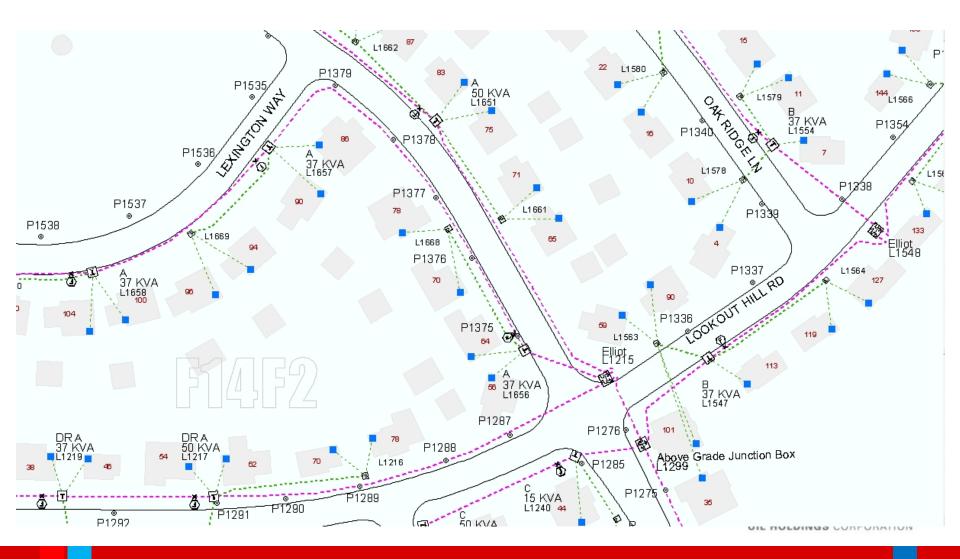
Detail View

- The Detail View shows UI's assets from the Circuit Breaker, right down to the Meter.
- There are approximately 1700 Detail Maps that make up UI's Territory.
- Paper Detail Maps are still maintained as a back up system
- Detail Maps are 100' Scale

Primary Circuit (PCM) View

- The Primary Circuit View shows a filtered view of UI's Assets; from the Circuit Breaker, down to the Transformer/Switch Level, No Secondary Features.
- There are approximately 400 PCM's, one map(s) per circuit.
- PCM's vary from one sheet to as many as eleven sheets.
- The Scale Factor of PCM's varies by circuit.
- There are also paper PCM maps hanging in the System Operations Center.


- The Feeder Mainline Map (FMM) shows UI's assets from the Circuit Breaker to major tie-points (i.e. Air-break Switch, Recloser, Vista Switch, Etc.)
- There is No Secondary on a FMM
- The original goal of the FMM was to fit the extent the circuit's Feeder on one sheet, but for readability reasons, a small amount have two sheets.
- UI's definition of Feeder is 3 Phase, un-fused open wire or cable.


The "Find Connected" trace finds all features connected to the selected circuit

URD – Underground Residential Distribution

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

UI PROTECTION & CONTROL

Bob Pellegrini, Manager

Protection & Control

- System P&C Engineer
- What do we do?
- Design systems to "PROTECT" people and equipment from harm during times of electrical faults or when electrical devices and or equipment fails or is damaged.

- Protection Systems
- Fuses and/or Protective Relays constantly monitor the power lines to check for problems.
- There Job is to instantly disconnect power lines during times of unplanned system events to protect equipment and personnel
 - Lightning
 - Pole Hit
 - Hurricane or other weather events
 - Equipment Failure
 - Human error

Substations

- Protection & Control Equipment.
- Electronics to Protect Equipment and Personnel
- Controls to operate system equipment.
- Circuit Breakers
- Switches
- Transformers
- Telecommunications Equipment
- Fiber optic Nodes and equipment.
- SCADA Equipment

Typical Substation Control Room

Typical Substation Yard



Transmission Protection Characteristics:

- Interconnected Transmission Grid as opposed to Distribution
- High Energy requires fast detection (1/4 cycle) sectionalizing and elimination of system disturbances
- Higher level of transmission complexity requires more sophisticated protection designs
 - Microprocessor based relays for speed, SOE, and recording capability
 - Independent primary and backup relay protection schemes
 - Physically Independent communication channels
 - Separated Physical control panels (Primary and backup separated in control room)
 - Separated and independent control cables
 - Digital Fault Recorders (DFR's) required to record relay events due to speed of operation
 - Reclosing employed; 90% faults lightning and temporary

Distribution Protection Characteristics:

- Radial circuit designs; not as complex as Transmission
- Circuits connected together only during switiching
- High fault currents; Open bus ties; Arc Flash
- Reclosers used for fast restoration on mainlines
- Communication to pole top devices through hybrid Fiber RF Solution
- Side tap fuses
- Relays coordinate with all field devices; Customer switchgear, pole top reclosers,
- Distributed Generation permitted
 - Fault Current analysis
 - Interconnection Agreement
 - Impact analysis
 - Relay design and coordination study

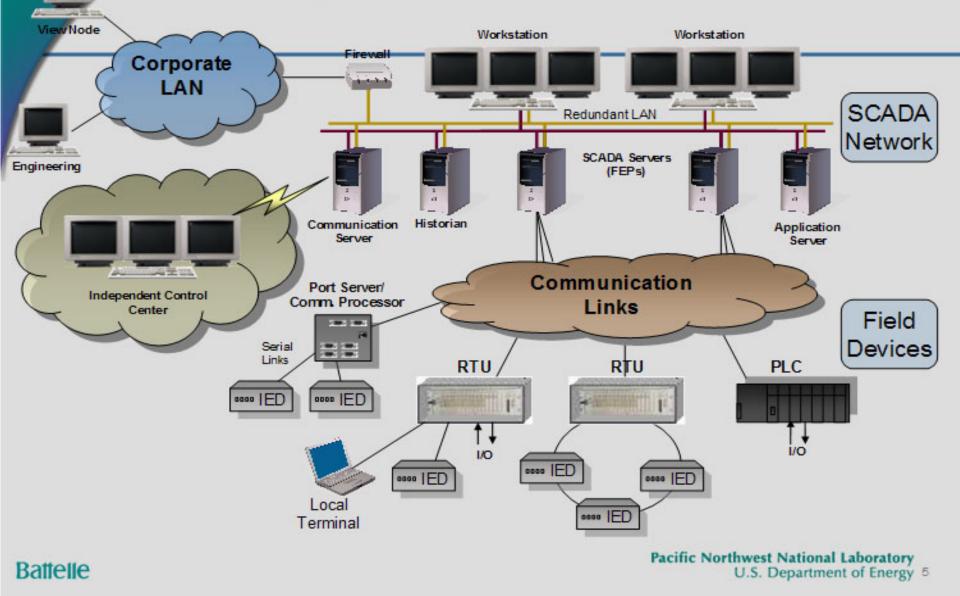
UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

SCADA Bryan LaPerle, Manager SCADA

What is SCADA?

Supervisory

- Control
- And
- Data


Acquisition

Any application that gets data about a system in order to control that system is a SCADA application and a SCADA application will contain two elements.

- The process or system that you want to monitor and control.
- A network of intelligent devices that with the monitor and control the system through sensors and control outputs.

Example SCADA Architecture

How SCADA Systems Works....

- <u>Data Acquisition</u> Refers to information received from sensors or transmitting devices.
- <u>Networked data communication</u> The protocol means required to communicate between devices. This communication may be made up of several protocols.
- <u>Data presentation</u> The SCADA system continuously monitors all sensors and alerts, with a comprehensive view of the entire managed system. (This can then be viewed by an operator through the SCADA operational interface)
- <u>Control</u> A system that responds to inputs from your system or inputs initiated by and individual.

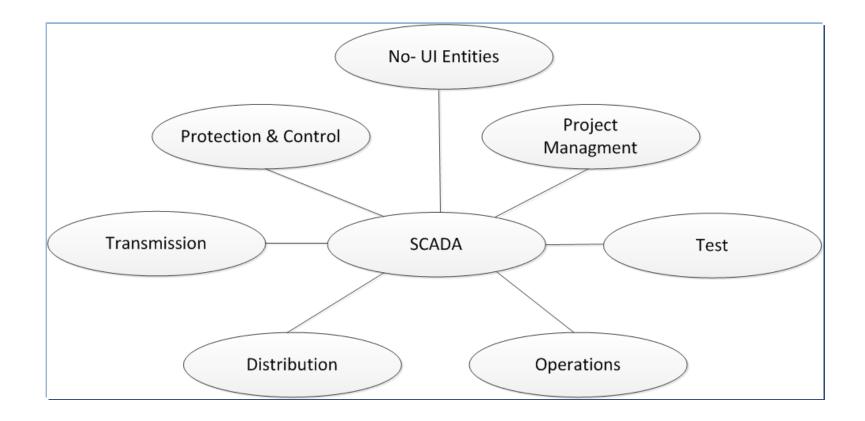
Keys to a successful SCADA system

- Robust Network Communications and Infrastructure
- Network Security
- Database Configuration
 - Proper alarm configurations
 - Standardizing normal and emergency operation modes
 - Set up a standard for database tagging
 - Configure for possible future expansion of your system needs
- Integration of field devices
 - Communications strategy to the field devices
 - Flexibility to accommodate all the open protocols
- Historical Data information access to business users.
- Maintaining a development and Quality Assurance platform

<u>Disclaimer</u>

Due to Regulatory requirements, United Illuminating is unable to share detailed information about our SCADA

system.

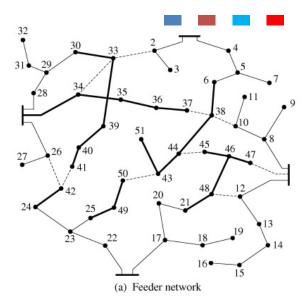


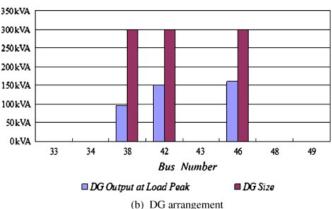
SCADA supports multiple groups within the United Illuminating company.

- Used for Fault Analysis
- Used for coordination Analysis of Equipment
- Primary Data used by this group is for information about.
 - Relay operations
 - o Breaker operations
 - Disconnect Switches
 - **Etc...**

Transmission

- Used for Transmission Planning Analysis
 - o Line ratings calculation verifications
 - Historical data collected to perform cable and transformer degradation analysis (loss of life).
 - Historical data that support existing project schedules as well as verify future projects and prioritize appropriately.
- Primary Data used by this group is for information about.
 - Analog data reports various time intervals which may include values of the minimum and maximum values of the data.





Distribution

- Used for Distribution Planning Analysis
 - Historical data collected to Correct overloaded feeder ratings
 - Historical data collected to Correct unbalanced load problems on feeders
 - Historical data collected to perform cable and transformer degradation analysis (loss of life).
 - Historical data that support existing project schedules as well as verify future projects and prioritize appropriately.
 - Historical data to maximize the operation of the Power Factor Correction Program.
- Primary Data used by this group is for information about.
 - Analog data reports various time intervals which may include values of the minimum and maximum values of the data.

SCADA

Operations

- Primary use is the Real Time
 Operator Interface to SCADA
 - Perform all switching and tagging functions
 - Monitoring the loading of lines and feeders during switching and abnormal circumstances.
 - 24/7 monitoring of the system
 - Responding to generated SCADA alarms and conditions, that may require dispatch of the proper work force to respond to the alarms.
- Primary Data used by this group is Real Time Data
 - \circ $\;$ Attribute reports shows the abnormal alarms on the system
 - Analog data reports various time intervals which may include values of the minimum and maximum values of the data.
 - Event data in order to respond to an alarm or system condition occurrence.

SCADA

TEST

- Primary use is the Real Time Operator Interface to SCADA and Event data
- Respond to Alarm conditions
- Validate real time load flows on relay schemes

- Primary Data used by this group is:
 - Real Time Database reporting for what is actually happening on the system as it happens.
 - $\circ~$ Attribute reports shows the abnormal alarms on the system
 - Analog data reports various time intervals which may include values of the minimum and maximum values of the data is used by the Test department for historical data trending.
 - Event data in order to respond to an alarm or system condition occurrence.

Project Management

- Supporting them in identifying the SCADA tasks and estimated time along with the order the activities take place. Also identifying if other groups are needed in order for our activities to be completed.
- Specification review
- Definition of SCADA related activities associated with a project
- Time estimates for SCADA activities
- Identifying additional resources required to support SCADA activities.
- Providing direction to the Project Management team around regulatory compliance requirements.

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

SMART METERING / ELECTRICITY LOSS & CONTROL METHODS

Guy Cattaruzza

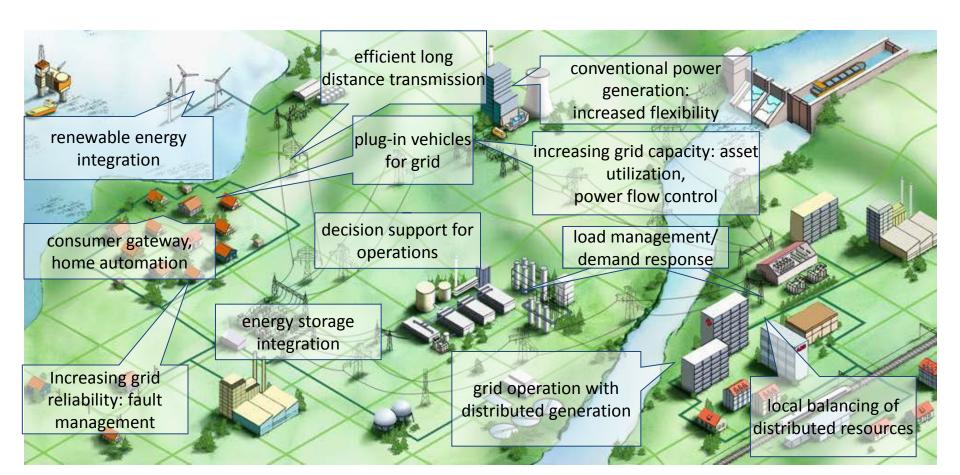
Sr. Director, Standard Field Operation

Advanced Metering Infrastructure

Agenda

Benefits of AMI and "Smart" Systems

> AMI System and Operation


> Data Analysis and Theft Identification

By Guy Cattaruzza Senior Director, Standard Field and Revenue Meter Systems

AMI and "Smart" Systems ... supports the entire electricity supply chain

Benefits of AMI and "Smart" Systems

Smart Grid Benefit	Nature of Benefit		Primary Beneficiary		
	Service	Cost	Customer	Utility	Society
Customer Participation					
Smart meters & home automation	✓	✓	✓	\checkmark	
Accomodation of plug-in hybrid electric vehicles	✓	✓	✓		\checkmark
Facilitation of demand response		✓		\checkmark	\checkmark
System Reliability & Efficiency					
Improved customer service	✓		✓	\checkmark	
Enhanced grid reliability	✓		✓	\checkmark	✓
Optimization of network performance	✓	✓		\checkmark	
Reduce system losses, operating expense		✓	✓	\checkmark	
Asset Utilization					
Equipment monitoring & reduced risk of failure	✓		✓	\checkmark	
Optimization of asset utilization		✓	✓	\checkmark	
Prioritization of system enhancements, repairs	✓	✓	✓	\checkmark	
Environmental Benefits, Renewable Energy, Ener	gy Storage				
Reduced carbon footprint					✓
Wind, solar, biomass integration	✓	✓		\checkmark	✓
Facilitate distributed generation		✓	✓	\checkmark	\checkmark
Enabling micro-grids		✓	✓		
		-	5311		

Stakeholder Benefits and Value Proposition

The United Illuminating Company

Regulators

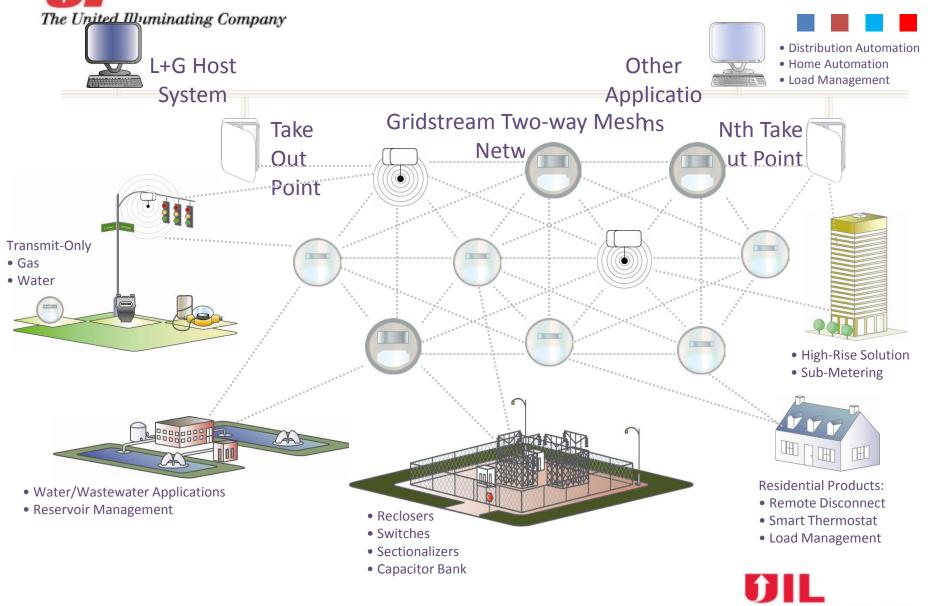
Time of Day and Daylight Savings Net Metering Flexible Rate Options Demand Response Conservation and Load Management **Customers**

> Customer Empowerment Self Service Options Billing and Payment Preferences Real Time Energy Management

New Opportunities

- Notification / Monitoring Services
- Residential Interruptible Rates
- Threshold Alerts
- Consolidated Billing

Theft Detection / Low Use Remote Turn On – Turn Off Meter Accuracy Improved Asset Utilization (Txfs) Operations - DR & ISO Savings Collections Field Visits Labor Efficiencies


Company Efficiencies

Outage Management

- Advanced Distribution Automation, Outage & Work
- Prepayment

AMI Network – Hybrid One & Two Way

System Architecture

> Over 337,000 total UI meters –

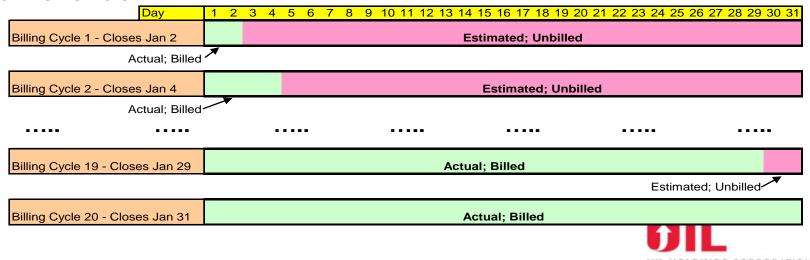
> 100,000 two-way

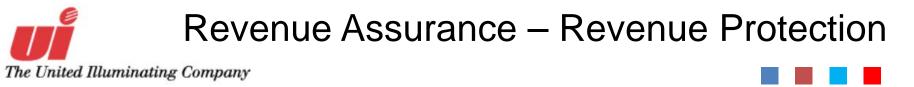
Meters have

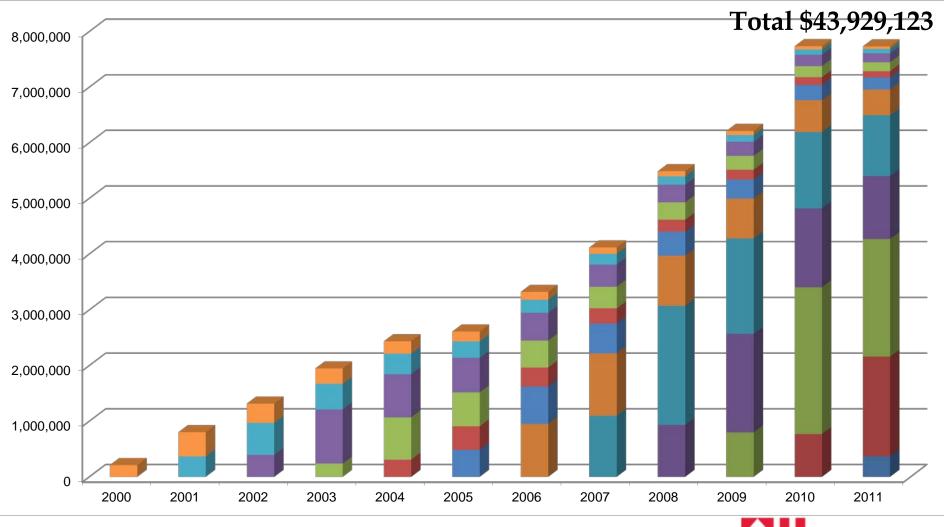
> Meters read every day w/15Min interval data available

- > 4100 Concentrators [2-way meters act like repeaters as well]
- > 30 Collectors
- ➢ Mesh Network RF, Fiber and...
- Master Data is stored in MDM interface with SAP
- > Robust billing process electronic presentment to payment
- Outage Management System uses meter intelligence for restoration and communication
- > Over 33% of our customers have Time-of-Day option

Enhanced Outage Management integrating MDMS Real time notification and reporting of outages Predict Transformer Outages based on meter reporting Recognize Planned Work vs. Unplanned Outage (Future) Voltage Monitoring

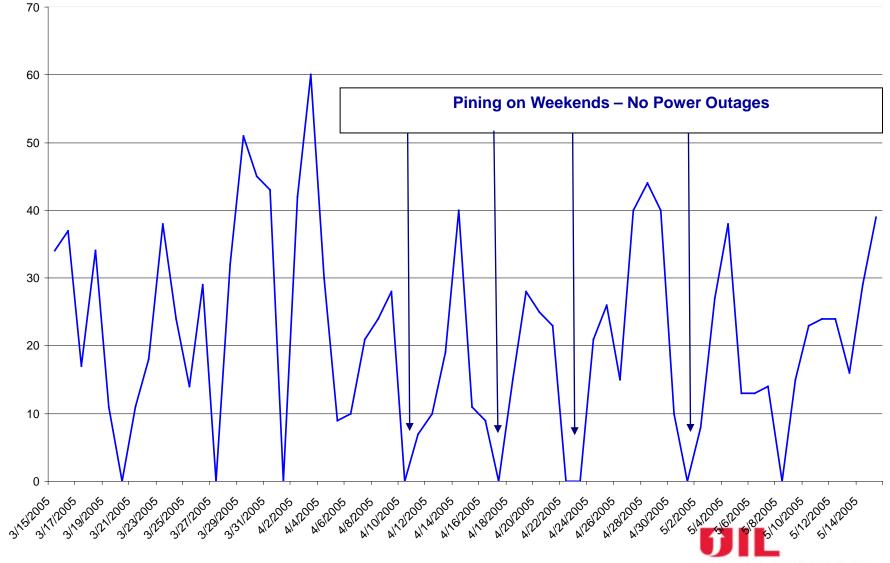

Revenue Assurance and Billing

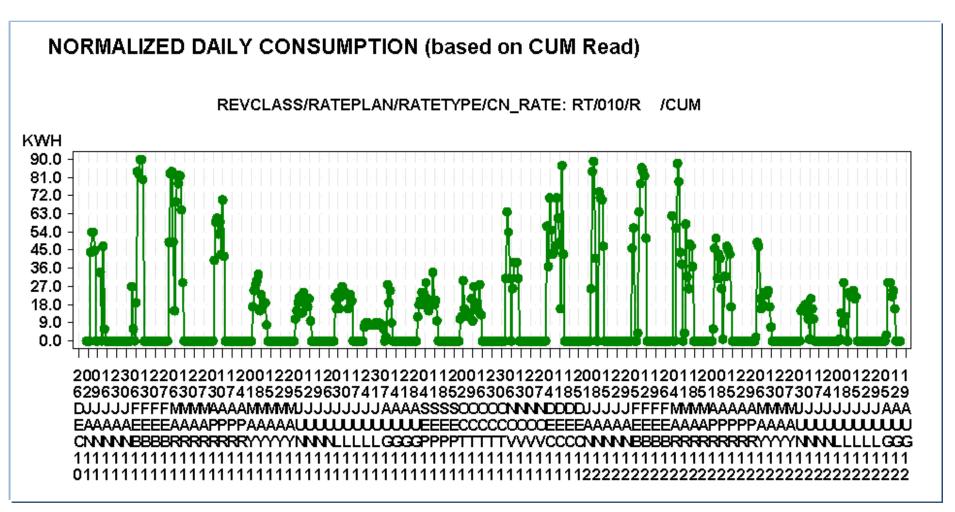

Using the information from AMI meters:


- Improve Billing Accuracy
- Identify and reduce illegal usage

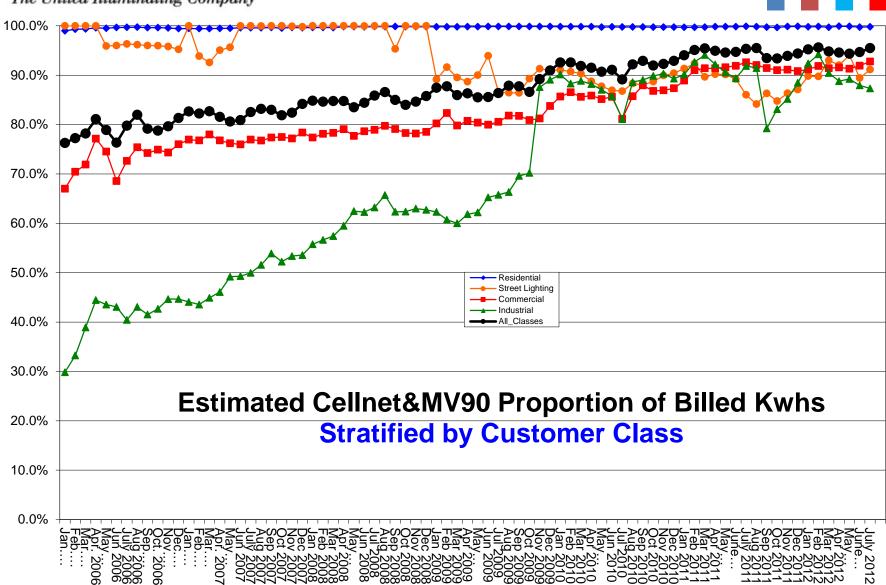
- Eliminate unbilled estimates by receiving actual reads at end of month for every meter.

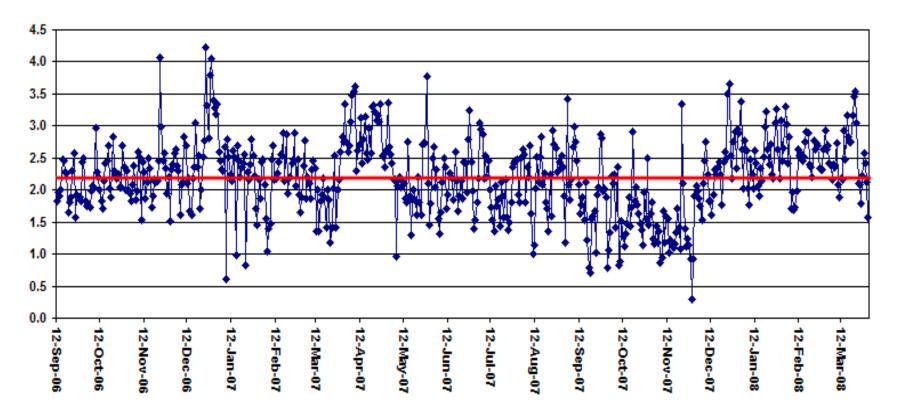
Unbilled Revenue




kWh

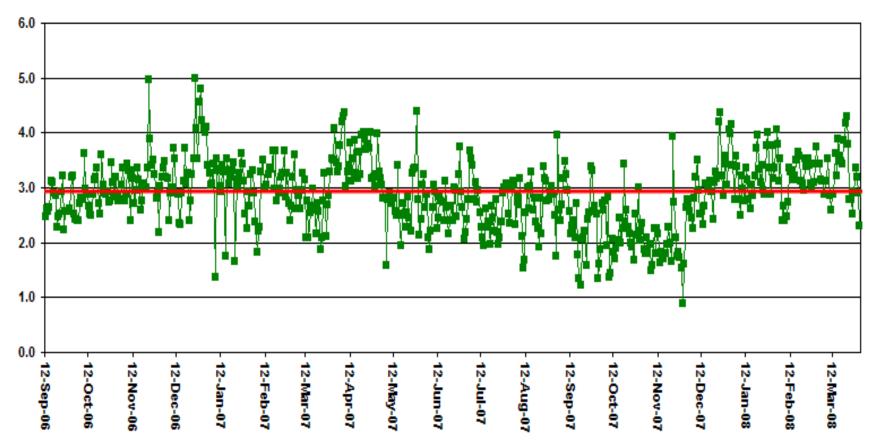
Theft of Service – Pinned Disk


Theft of Service – Pinned Disk

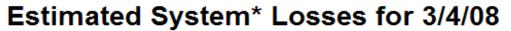

Data Analysis

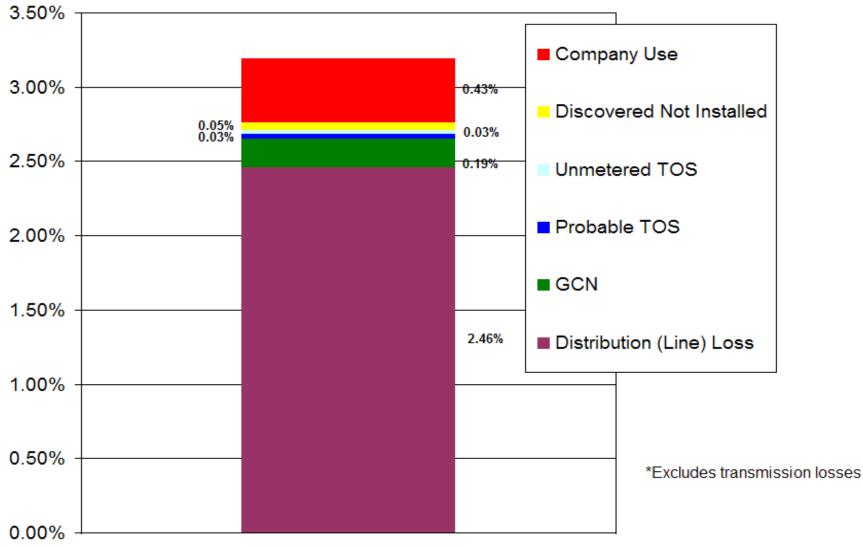
Estimates of distribution line loss Average = 2.2 %

ESTIMATED SYSTEM LINE LOSS PERCENTAGE (wires)



Data Analysis – System Losses


Estimates of total system loss have averaged 2.9% (excluding transmission losses)


ESTIMATED TOTAL SYSTEM LOSS PERCENTAGE

Data Analysis – System Losses

Meter Errors and Reporting

Meter Events, Reporting and Detection

Error Type	Display
Unprogrammed	Scroll
Unconfigured	Scroll
RAM Failure	Scroll
Non Vol Mem Failure	Scroll
Clock Error	Scroll
Measurement Error	Scroll
Low Battery Error	No Display
Demand Overload	No Display
TamperSetect	Scroll
Reverse Rotation	Scroll
SD Switch Error (LS Voltage)	Scroll
Time Adjust	Scroll
Phase Error	Scroll
SD Switch Sensor Error	Scroll
Stuck Switch Error	Scroll
Temperature Error	No Display
Phase A Out	Scroll
Phase B Out	Scroll
Phase C Out	Scroll
Invalid Service	Scroll
Standby Accumulation Error	No Display
Excessive Leading Current on Phase A	No Display
Excessive Leading Current on Phase B	No Display
Excessive Leading Current on Phase C	No Display

Primary Power Down
Primary Power Up
Time Changed Old Time
Time Changed New Time
Meter Accessed For Read
Meter Programmed
Communication Terminated Normally
Communication Terminated Abnormally
Reset Lat Pointers
Update List Pointers
History Log Cleared
History Log Pointers Updated
Event Log Cleared
Event Log Pointers Updated
Demand Reset Occurred
Daylight Savings Time On
Daylight Savings Time Off
Season Change
Rate Change
Special Schedule Activation Time Society Changes
Tier Switch Change
Test Mode Started
Test Mode Stopped
Configuration Error Detected
Ram Failure Detected
Nonvolatile Memory Failure Detected
Clock Error Detected
Measurment Error Detected
Low Battery Detected
Demand Overload Detected
Tamper Attempt Detected
Reverse Rotation Detected
Service Disconnect Operation
Meter Log Failure
Sag/Swell Start/End
Temperature Threshold Exceeded
Excessive Leading Current Started/Ended
SD Switch Operation Error
Unauthorized Requests
Meter Flash Event
Sync Time to Line
Standby Mode Enter
Standby Mode Exit
Meter Removal/Insertion Detection

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

LIVE LINE CONSTRUCTION PROJECTS

Vinny Brescia

Manager, Overhead Power Delivery

Presentation Topics and Tips

- SAFETY FIRST FR CLOTHING
- INSULATE AND ISOLATE
- **RUBBER GLOVING**
- **RUBBER GOODS**
- LINK STICK REQUIREMENTS
- LIVE LINE TOOL REQUIREMENTS
- **EPZ GROUNDING**
- FIELD PHOTOS

SAFETY FIRST – BEGINS WITH THE PROPER UTILIZATION OF ALL PPE – Personal Protective Equipment/FR Clothing

- Flame resistant clothing shall be worn when an employee may be exposed
- to an electrical hazard.
- FR Clothing enhances employees' personal safety and is considered a
- component of personal protective equipment (PPE), but is not considered a
- replacement for any additional PPE that is required for specific tasks and
- operations, as specified in UI's Safety Manual.
- Frequent Users are those employees who have been determined to have the
- greatest exposure to electrical hazards and, as such, are required to wear
- approved FR garment at all times during the course of performing their
- regular job duties.
- Introduction: Line Worker First Class and Union Safety Officer Chris Jensen
- Chris is modeling "some" of the FR Clothing items that may be used in an average workday.

INSULATE AND ISOLATE

BRIEF DEFINITON

- The worker is "**INSULATED**" by using approved and properly tested protective equipment, specifically rubber gloves, rubber sleeves, and insulating cover-up equipment.
- The worker is "**ISOLATED**" by using an approved insulating aerial device, which is also an additional layer of insulation.

RUBBER GLOVING ABOVE 5kv

• Rubber glove work performed at voltages above 5Kv shall be done utilizing the principles of "Insulate and Isolate."

Rubber glove and sleeve requirements

When rubber glove work methods are employed for primary work, approved and properly tested rubber gloves and sleeves shall be worn.

Direct Handling (Rubber Gloving) Procedures above 600 volts cont.

Inspections required before rubber gloving (applicable to ALL primary voltages)

- a. Rubber gloves should be visually inspected AND air tested before beginning work.
- b. Rubber sleeves should be visually inspected before work.
- c. Rubber insulation (blankets, line hose, hoods, etc.) should be visually inspected before use.
- d. Fiberglass boom(s) of insulated aerial device should be visually inspected and cleaned as necessary.

UIL HOLDINGS CORPORATION

Direct Handling (Rubber Gloving) Procedures

Cover-up practices (applicable to ALL primary voltages)

- a. When working on energized conductors and equipment using rubber glove work methods, all energized conductors and equipment within maximum reaching distance of any part of the employee's body shall be covered with approved protective equipment, except that portion which is actually being worked on.
- b. When working on energized conductors and equipment, all other items, including conductors, equipment, guy wires, neutrals, telephone and/or CATV cables, grounds, possible grounds, and portions of poles and cross arms within maximum reaching distance of any part of the employee's body shall be covered with approved protective equipment.

Direct Handling (Rubber Gloving) Procedures Cover-up practices (applicable to ALL primary voltages) cont.

- c. When an energized primary conductor is placed on a cross arm, bracket, or against the pole, the conductor shall first be covered with line hose, and in addition, the cross arm, bracket, or pole shall be covered with a rubber blanket or other approved insulation.
- d. Intentional contact with energized lines or rubber protective equipment shall be with rubber gloves only. Other parts of the body should be kept clear of energized lines or rubber protective equipment.
- e. Rubber protective cover-up equipment is to be used to provide protection against incidental contact with sources of potential, and is not intended for use as support, balance, leverage, or handholds.

JIL HOLDINGS CORPORATION

Direct Handling (Rubber Gloving) Procedures

Cover-up practices (applicable to ALL primary voltages) cont.

- f. The insulated boom and/or bucket of an aerial device should not come in contact with unprotected conductors or grounded objects when rubber gloving work methods are being used.
- g. Work limited to one phase at a time Work being performed on energized conductors and/or equipment in the same work area shall be confined to one phase of the circuit at a time. Simultaneous contact with multiple phases or a phase and any part of the structure is not permitted.

Link Stick Requirements

- When using approved hot line hoists (web jacks, blocks, rope, winch line or similar devices) an approved insulating link stick shall be installed between the hot line hoist and an attachment point with a different potential. Care should be exercised to maintain link sticks in good mechanical and electrical condition.
- Defective link sticks shall be turned in for testing, repair and/or replacement.
- Link sticks are required for 2.4 kV and 4 kV under similar conditions.

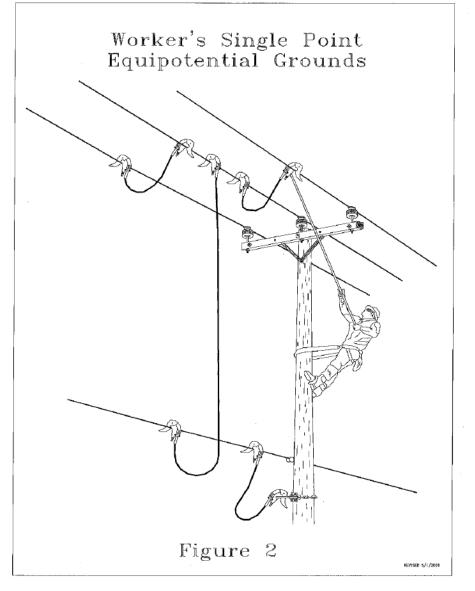
Live Line Tool Requirements

Specific operations requiring continued use of approved live line tools include, but are not limited to, the following:

- 1. Cutout/disconnect opening and closing.
- 2. Energizing of transformer primary connections.
- 3. Primary connection of lightning arresters.
- 4. Use of "load buster" tool.
- 5. Operating regulator bypass devices.
- 6. Whenever energizing equipment and/or conductors.
- 7. Attaching portable grounds.

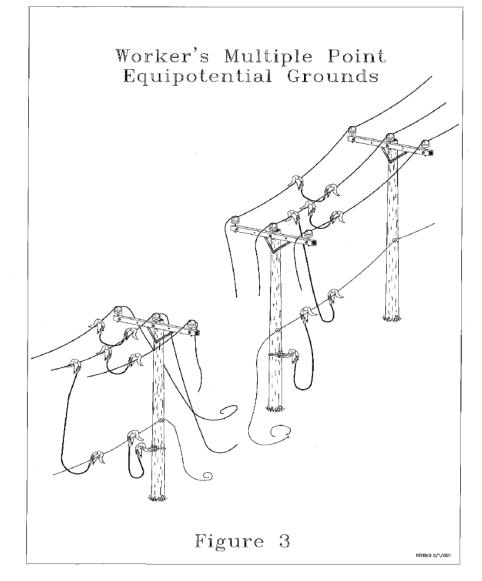
GS CORPORATION

GROUNDS AND EPZ

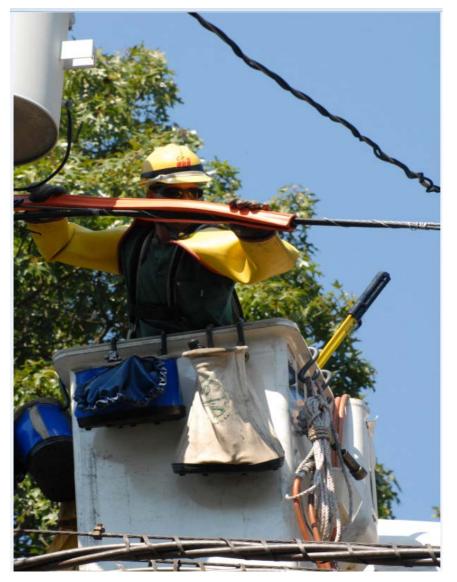

An Equal Potential Zone (EPZ) must be established around any and all workers before any conductor or line can be treated as dead and grounded. This equal potential zone must be set up in accordance with UI Company Procedure (OP-D72).

□ Under no conditions should anyone ever assume that a line or a piece of equipment is de-energized, unless it is properly tested, grounded, and tagged.

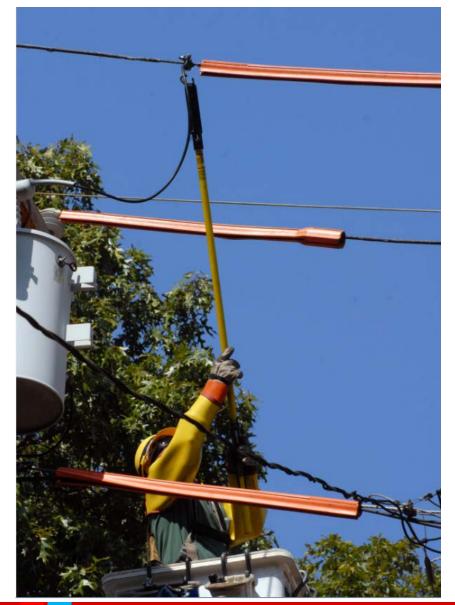
Note: The diagrams on the following pages are reference copies from UI Procedure: Grounding For Personal Protection On Overhead Distribution Lines – OP-D72

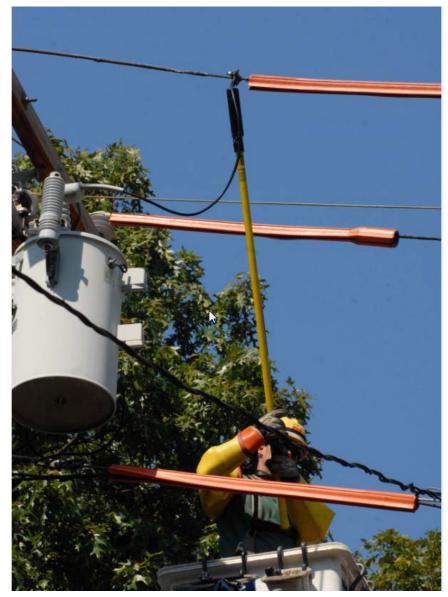


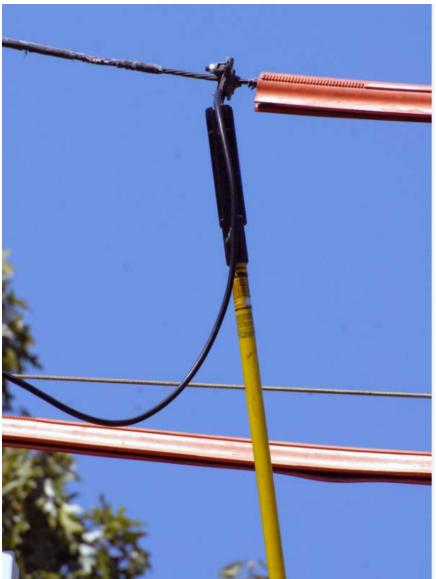
FIELD PHOTOS



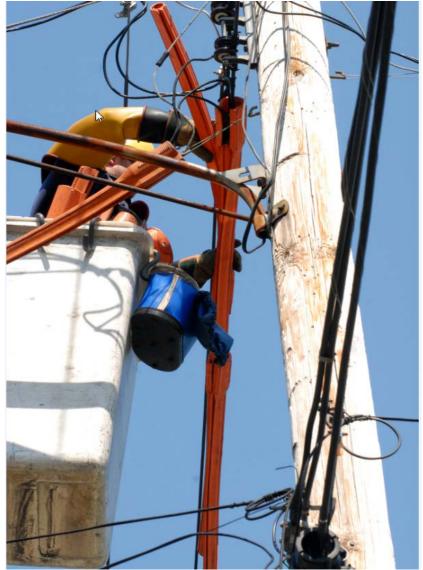
OIL HOLDINGS CONFORATION

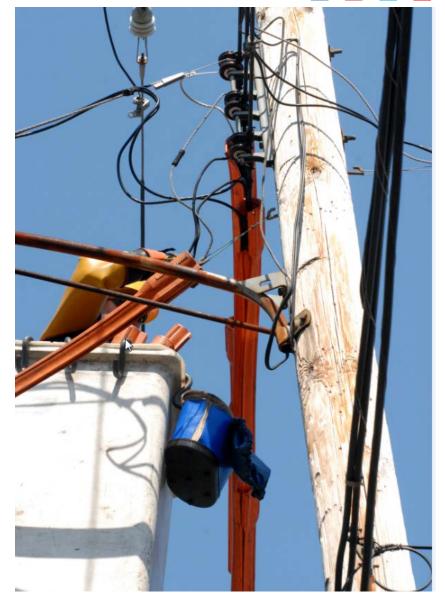


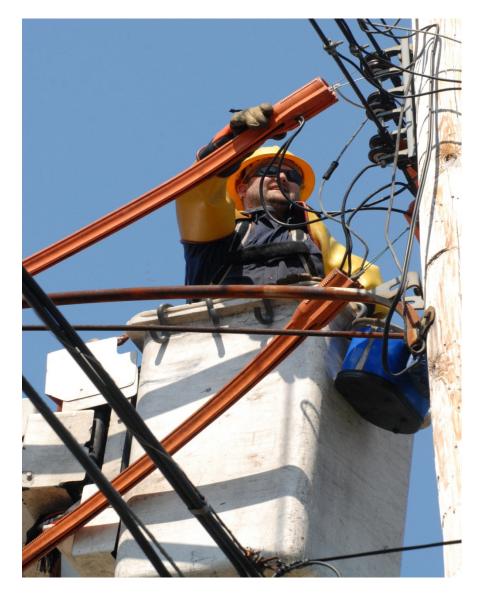


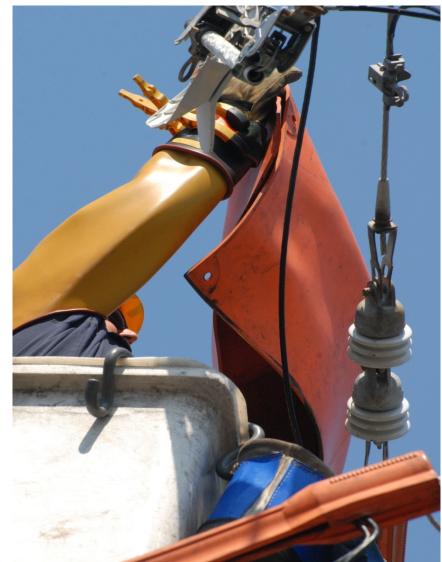


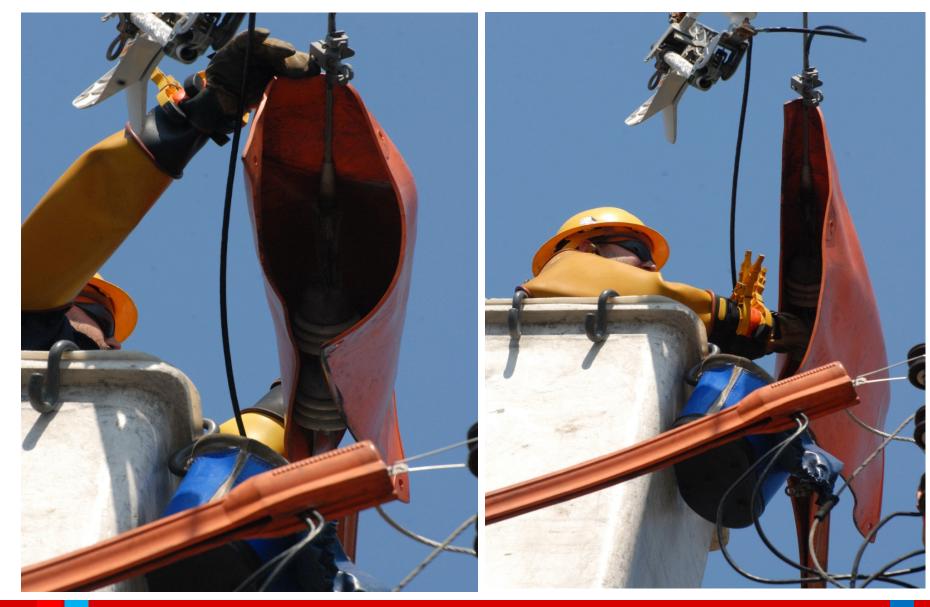
OIL HOLDINGS CONFORMION



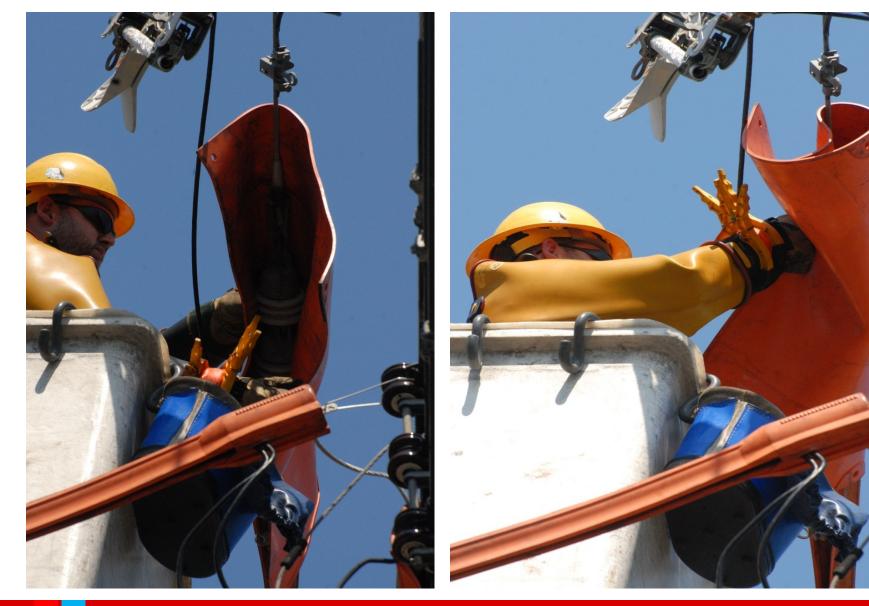


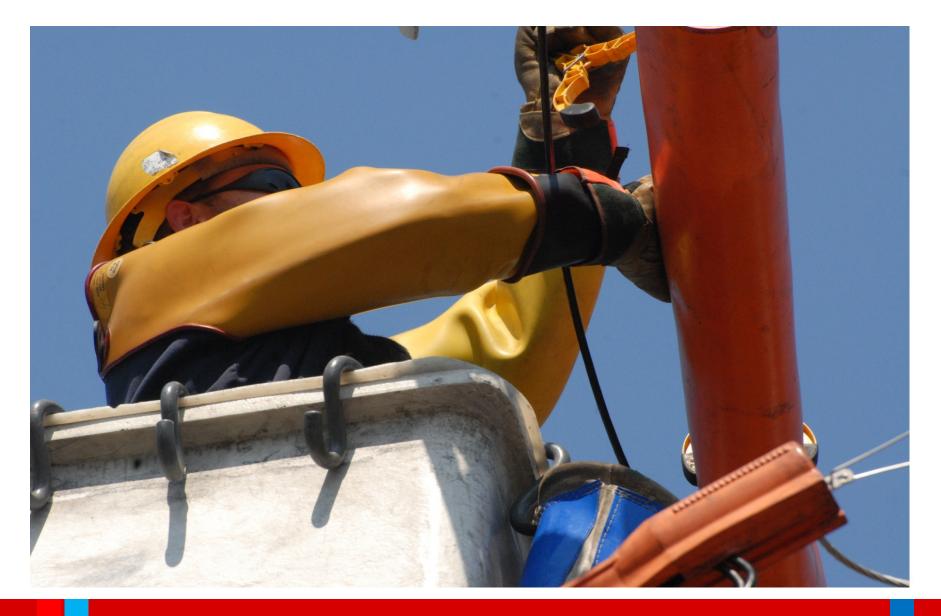






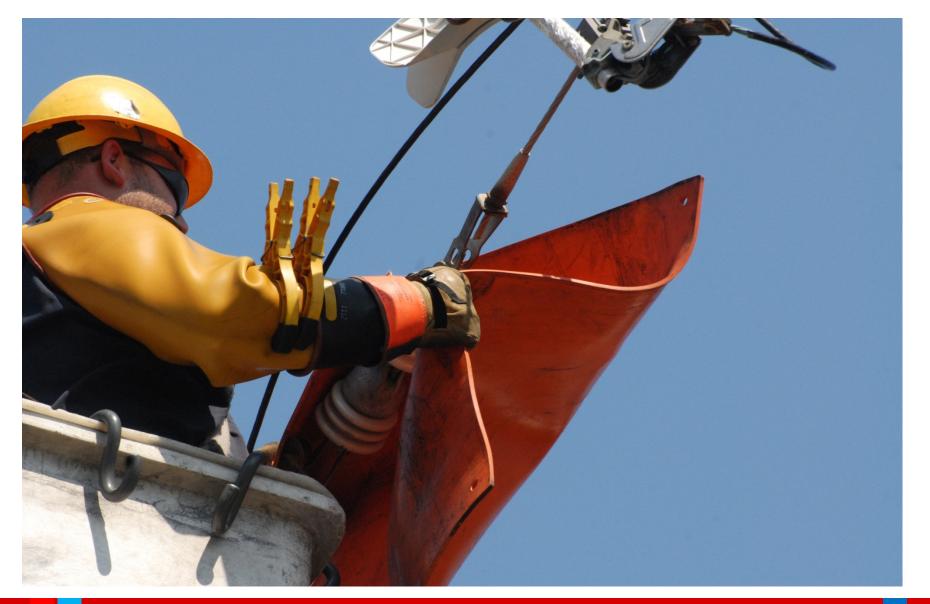
OIL HOLDINGS CONFORMION

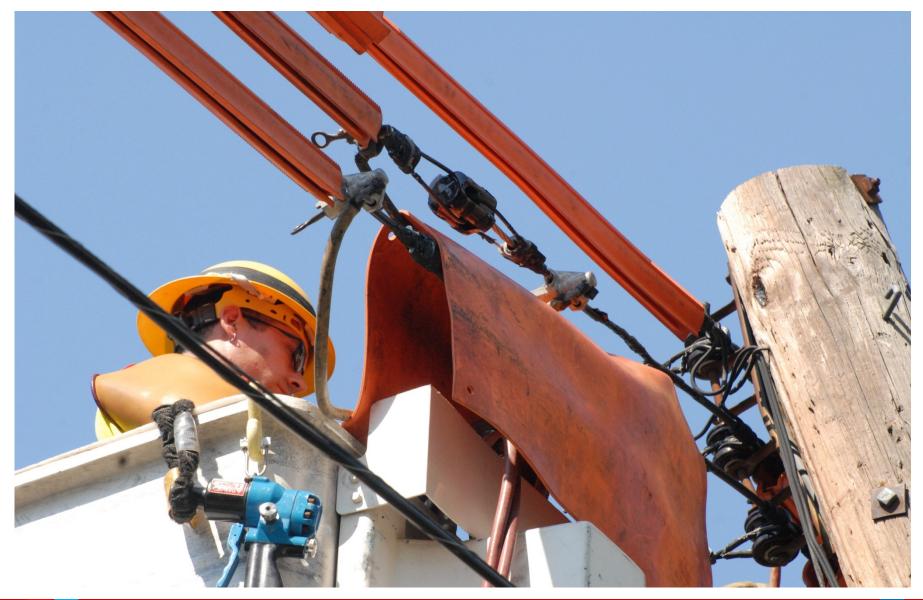


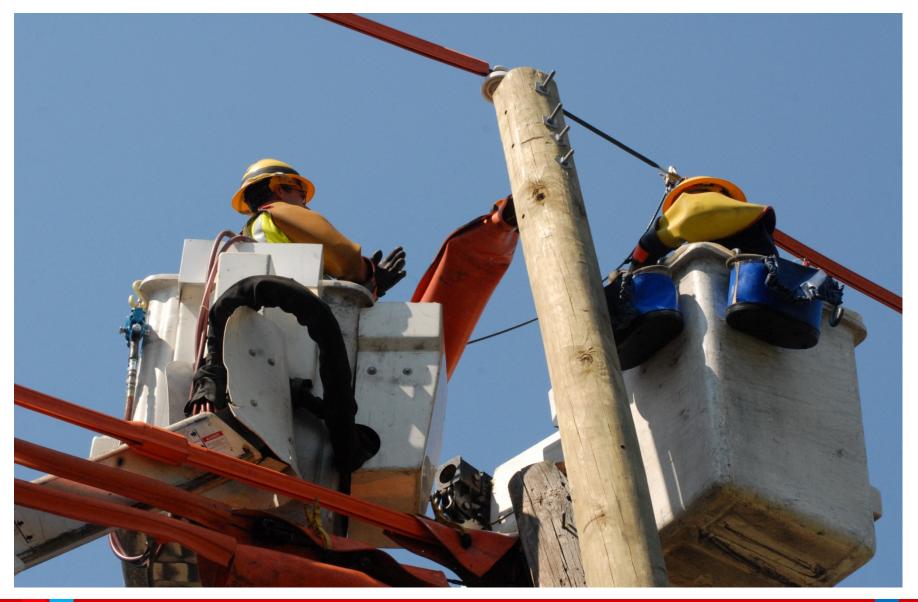


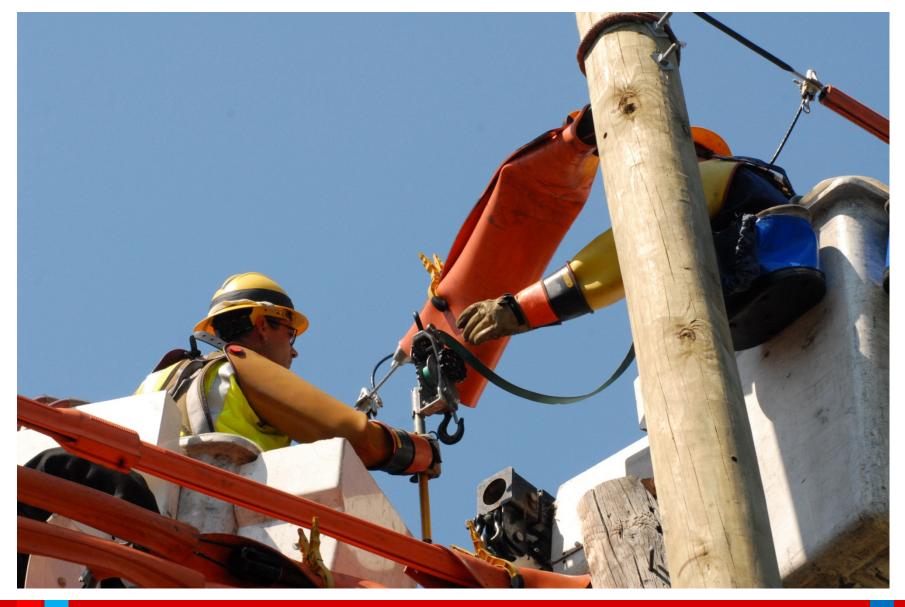


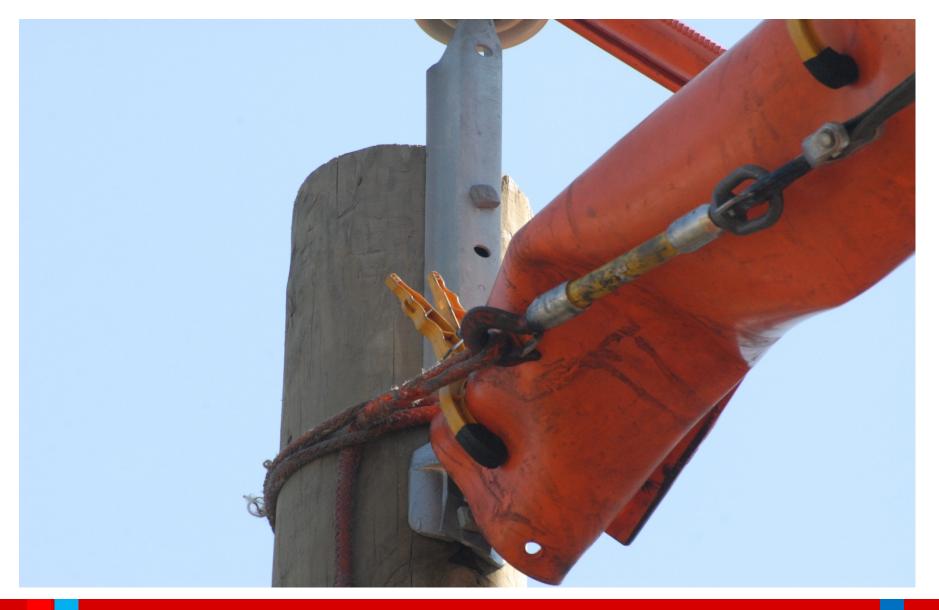
OIL HOLDINGS CONFORMION

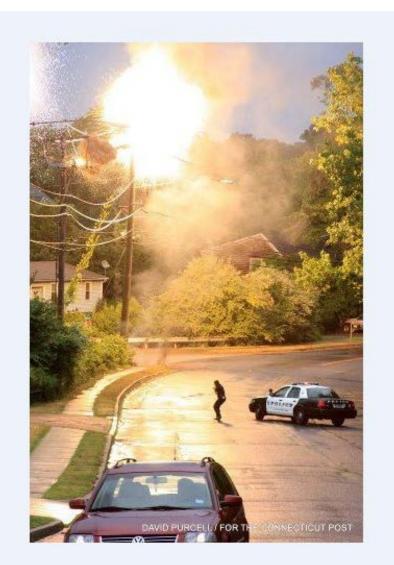












Safety First, Always!

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

LOAD REDUCTION / SHEDDING

Ed Delmonte

Transmission Operations Lead Engineer

Transmission & Distribution Operations and Maintenance Department

Transmission System Abnormal Conditions and/or Capacity Deficiency Plan and how it relates to UI's distribution system

High Level Description

- Who are FERC, NERC , NPCC , ISO and CONVEX
- ISO Master/Local Control Center Procedure No. 2
- ISO OP 2,4,6, 7

The United Illuminating Company Who are they and what do they do?

FERC- Federal Energy Regulatory Commission

- They define ISO's authority and the services it provides
- Approves and mandates rules that guide ISO responsibilities
- NERC-North American Electric Reliability Corporation
 - Develops and ensures compliance with mandatory planning and operating power system standards
 - Can Levy fines of \$1,000.00 to 1 Million per day per violation

Who are they and what do they do?

NPCC- Northeast Power Coordinating Council Inc.

- Develops, implements and enforces criteria for the design and operation of interconnected power system
- ISO New England- Independent System Operator
 - Ensure that the regional Transmission system can reliably deliver power to consumers under a wide range of present and future system conditions
 - Develop and follow procedures to meet numerous stringent long term/ short term reliability standards

Definition of Abnormal Conditions

Judgment made by ISO or CONVEX when abnormal conditions exist (or anticipated) that will degrade the reliability of the bulk power supply such as:

 Forecast or actual shortage of Operating Reserves requiring implementation of ISO OP-4 or OP-7, CONVEX OI-4, OI-7, UI OPE-04, OPE-07

Definition of Abnormal Conditions

The United Illuminating Company

- Low transmission voltages and/or low reactive reserves (OP-12 Appendix A)
- Inability to provide first contingency protection when undesirable post-contingency conditions might result (i.e., load shedding required post-contingency)
- Cold Weather Event declared
- Credible threats to power system security such as: SMD, sabotage or approaching storms
- Other conditions at ISO-NE or LCC discretion

What is M/LCC 2 ?

- Master Local Control Center Procedure No. 2 (M/LCC 2) Abnormal Conditions Alert, is used to alert applicable power system operations, maintenance, construction and test personnel as well as each applicable Market Participant (MP) when an abnormal condition affecting the reliability of the power system exists or is anticipated.
- Once notified of an M/LCC 2 Abnormal Condition Alert, these entities are expected to take precautions so that routine maintenance, construction or test activities associated with any generating station, Dispatchable Asset Related Demand (DARD), Real-Time Demand Response, Real-Time Emergency Generation, transmission line, substation, dispatch computer, and communications equipment do not further jeopardize the reliability of the power system.
- If a maintenance, construction or test activity could jeopardize the reliability of the power system such activity shall be stopped and/or postponed during the M/LCC 2 Abnormal Condition Alert.

M/LCC 2 may be implemented by:

- ISO-NE for abnormal conditions affecting New England-wide reliability.
- Individual LCCs for abnormal conditions that affect a single LCC's reliability. If UI has a significant event, CONVEX will declare M/LCC2

OP-4- Action During A Capacity Deficiency

This procedure establishes criteria and guides for actions during capacity deficiencies, as directed by ISO New England (ISO) and as implemented by ISO and the Local Control Centers (LCCs). This procedure may be implemented any time one or more of the following events, or other similar events, occur or are expected to occur:

Examples of actions during OP-4 are:

- Voluntary load curtailment (UI OP-E08)
- ISO Load response program
- 5% system wide voltage reduction(UI OP-E02)

OP-07 - Action in an Emergency

This Operating Procedure (OP) establishes criteria to be followed in the event of an operating emergency involving unusually low frequency, equipment overload, capacity or energy deficiency, unacceptable voltage levels, or any other emergency that ISO New England (ISO) deems appropriate in an isolated or widespread area of New England. The objectives in establishing these emergency actions are:

- 1. To protect reliable operation of the Eastern Interconnection.
- 2. To restore balance between customers' load and available generation in the shortest practicable time.
- 3. To minimize risk of damage to equipment.
- 4. To minimize interruption of customer service

If we are experiencing a Transmission Line over load condition, UI will Manually shed load by supervisory. This is a special SCADA display that will shed load based on what is needed. The display shows the operator "blocks" of load that can be shed. The customer circuits for this procedure are reviewed each January based on previous year's load.

NPCC Requirements for OP-07

- Automatic Under frequency Shedding for low frequency condition
- Goal is to return frequency to 58.5 Hz in 10 seconds and 59.5 Hz in 30 seconds for generator loss of up to 25% of load.


Stage 1	59.5 Hz	7%	300 ms
Stage 2	59.3 Hz	7%	300 ms
Stage 3	59.1 Hz	7%	300 ms
Stage 4	58.9 Hz	7%	300 ms
Stage 5 (anti-stall)	59.5 Hz	2%	10 s

OP-6- System Restoration

- This procedure addresses restoration of the Bulk Electric System (115 kV and above) after a partial or complete system blackout. Expeditious restoration of the Bulk Electric System depends on independent actions and interactions by Market Participants, Local Control Centers (LCCs) and ISO New England (ISO). Depending on the expanse of the blackout (local area or widespread) numerous Market Participant and LCC restoration procedures, and this procedure, may need to be implemented simultaneously. NPCC Regional Reliability Directory #8 System Restoration provides more detailed information on how system operators should establish and maintain Inter-Area tie lines.
- During system restoration, a high priority must be given to the restoration and reliability of the Interconnection as well as restoration of off-site AC power sources to nuclear Generators. Also, technical aspects of system restoration (i.e. Generator startups, load pickups, switching surges, voltages, frequency, synchronization of islands, etc.) will be crucial. Recognizing these concerns, this procedure and all LCC restoration procedures have been developed in a coordinated fashion.

- Phone Calls
 - ISO to CONVEX to UI Operations center to UI folks listed in OP's

- Text Messaging
 - ISO
 - CONVEX

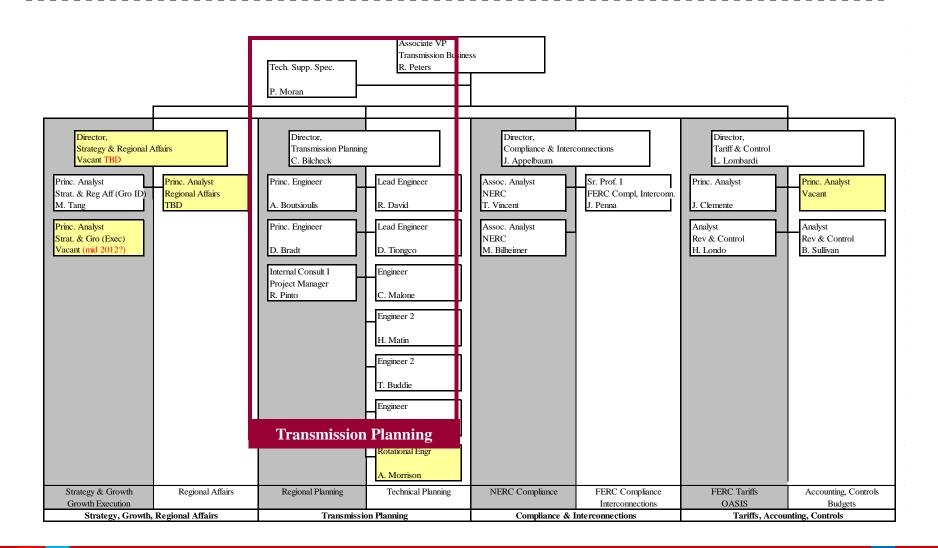
- Email alerts
 - ISO
 - CONVEX

UI Electric T & D Utility Exchange Program (Pakistan Distribution Companies)

TRANSMISSION & ASSET PLANNING

Christian Bicheck

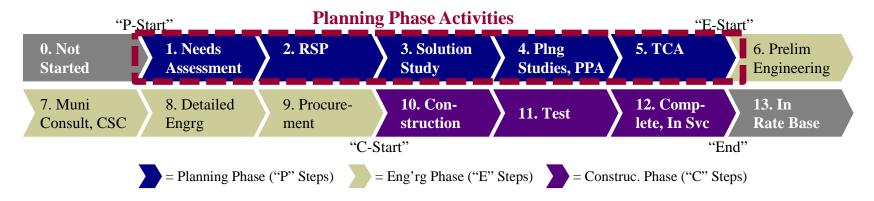
Director, Asset Planning Transmissions



The Transmission Business Organization

The Planning Team

UI's Transmission Asset Planning Department is responsible for effectively planning the electric transmission system to assure its customers receive safe, reliable and cost-effective transmission service, in support and in compliance with NERC, NPCC, ISO-NE and UI reliability criteria, standards and procedures.



Front row left to right: Dave Bradt, Tonya Buddie, Hasan Matin Back row left to right: Richard David, Dindo Tiongco, Chris Malone, Chris Bilcheck, Rich Pinto, Alex Boutsioulis

UI must follow NE's Planning Process

The United Illuminating Company

- (1) Needs Assessment: System needs must be studied and well-documented. Study scope, assumptions, procedures and findings are presented to ISO and the New England Stakeholder group (i.e., "PAC")
- (2) RSP ("Regional System Plan"): A transmission project that is being considered as a potential solution to meet the identified need, but for which there is little or no analysis available to support. As projects become more real/ defined, regular updates are made to the RSP (e.g., cost estimates, projected in-service dates) and to PAC.
- (3) Solution Study: Strive to identify the most cost-effective and reliable solutions for the region that meet the identified need. Findings and recommendations of this evaluation of alternatives is vetted through ISO and the PAC.
- (4) Planning Studies, PPA: System impact studies have been performed to show the transmission project has "no adverse impact" on the reliability or operability of the transmission system.
- (5) TCA ("Transmission Cost Allocation"): Formal process to seek New England-wide recovery of the costs for transmission projects that are part of the "pool" (i.e., "PTF")

Needs Assessments are Initiated to Comply with Mandatory Reliability Standards

Federal Power Act (1935), Energy Policy Acts of 1992/2005:

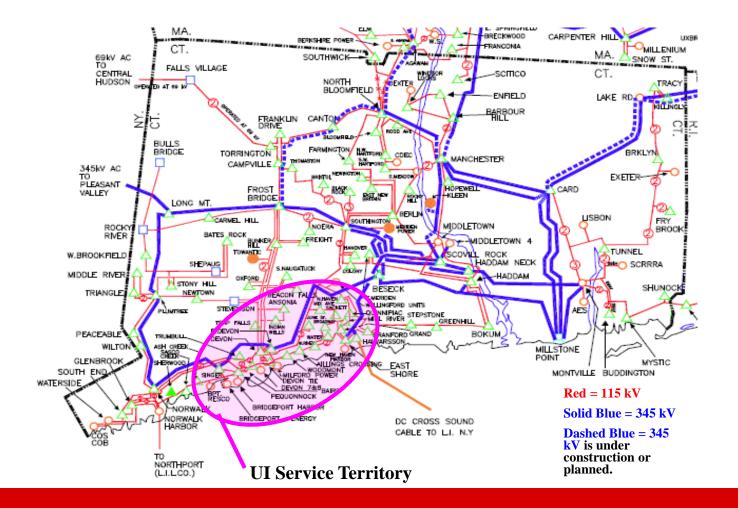
- Federal oversight of Transmission
- Authorized FERC to ensure Transmission System reliability
- FERC authorized NERC to establish and implement standards

Reliability is defined by resource adequacy and security

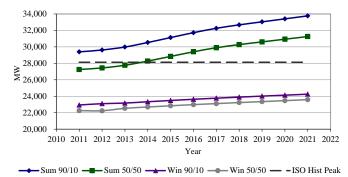
- Resource adequacy is to ensure sufficient supply
- Security is the ability of the power system to withstand contingencies and events

NERC reliability standards are mandatory

- NERC has defined over 800 mandatory requirements
- Penalties for non compliance reliability violations can result in fines up to \$1 million/day


NPCC and ISO-NE

- Regional focus
- Includes NERC requirements
- Ensure adequate resources and transmission to meet electricity demand


Connecticut is Integrated as Part of the NE System; Coordinated studies with ISO-NE/NU are needed

Needs Assessments also initiated from other concerns; Close coordination with D-Planning and T&S Engineering

Customer Load Growth

System Additions/ Retirements

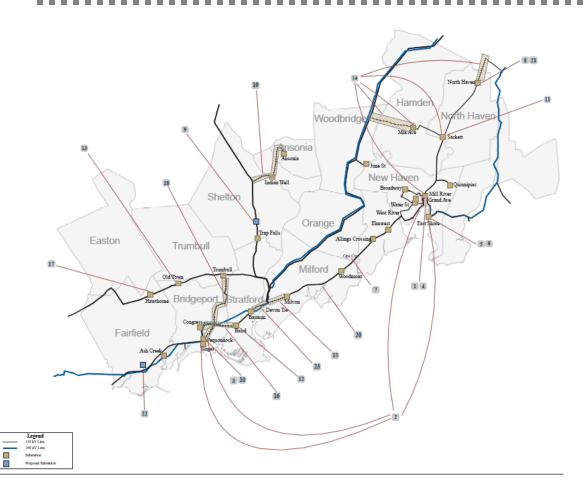
Aging Infrastructure

Adequacy of Design

Many Solution Studies are currently in progress

- SWCT II Coordinated Study; solutions are being developed for:
 - New Haven Area line overloads and voltage collapse concerns
 - Railroad line overloads
 - Bridgeport cable overloads
 - Old Town/ Hawthorne weak transmission voltage
 - Naugatuck Valley overloads and voltage collapse concerns
- Pequonnock Fault Duty Mitigation
 - Many years in development to get to preferred solution
 - Storm surge exposure/ risk impact
- Old Town and Baird Substation Upgrades or Replacement
 - Many upgrades (T&D) required at each substation
 - Evaluation of a complete station replacement vs. component upgrades

Examples of Projects that have recently moved through the Planning Process


- Water Street and West River Fault Duty Mitigation: Bus system and ground grid upgrades completed in 2011
- Capacitor Bank TRV Mitigation: East Shore completed in 2011, North Haven to be completed in 2012
- Devon Tie BPS Compliance: Completed in 2011, met UI's implementation plan schedule to NPCC to comply with BPS design requirements
- East Shore OCB/Switch Replacements: Phase 1 completed in 2011, Phase 2 ISD summer 2014. Received approval for 100% regional cost allocation.
- 8300 Line Reconfiguration Project: Construction to start this fall with summer 2014 ISD. Need identified from SWCT study. Currently in cost allocation approval process.
- Shelton Substation: Has received technical approval at ISO, currently in preparation for siting approval, planned 2014 ISD. Need driven by area load growth and voltage collapse concerns

UIL HOLDINGS CORPORATION

Transmission and Substation Ten Year Plan Projects

1 Grand Avenue 115 kV Switching Station Modernization	In-Service
2 ISO-NE Synchrophasor, Phasor Measurement Unit Installation	Construction
3 Pequonnock 115 kV Bus System Upgrades, Bay 1	Planned
013	
4 8300 Line Reconfiguration Project	Planned
5 East Shore 115/13.8 kV Substation, Distribution Capacity Upgrade	Planned
6 East Shore Substation, 115 kV Circuit Breaker and Switch Replacement	Planned
7 SCADA Master Station Replacement	Planned
8 North Haven Substation, Capacitor Bank TRV Mitigation	Construction
014	
9 New Pootatuck (Shelton) 115/13.8 kV Substation	Planned
10 Pequonnock 115 kV Fault Duty Mitigation, Phase 1	Proposed
 Control Room/ Relay Replacement 	
- 115 kV Bus System 63 kA upgrade	
- Disconnect switch replacements	
015	
11 Sackett 115/13.8 kV Substation, Distribution Improvements	Planned
016	
12 Baird 115/13.8 kV Substation Upgrade or Replacement	Concept
13 Old Town 115/13.8 kV Substation Upgrade or Replacement	Concept
14 SWCT, New Haven Area 115 kV Transmission Upgrades	Concept
- Glen Lake - Mix Ave 115 kV 1610 Line Reconductoring	
 Sackett: Phase Shifter Removal, 115 kV Capacitor Bank Replacement, Terminal Upgrades Min Area 115 kV Capacitor Bank Addition, Terminal Upgrades 	
 Mix Ave: 115 kV Capacitor Bank Addition, Terminal Upgrades North Haven - Wallingford 115 kV 1630 Line Reconductoring 	
- Grand Ave: 115 kV Capacitor Bank Addition	
15 SWCT, Devon Tie- Milvon 115 kV RR Line Reconductoring/Upgrade	Concept
16 SWCT, Congress - Baird 115 kV RR Line Reconductoring/Upgrade	Concept
17 SWCT, Hawthorne 115 kV Capacitor Bank (2) addition	Concept
18 SWCT, Trumbull - Pequonnock 115 kV Transmission Upgrades	Concept
19 SWCT, Naugatuck Valley 115 kV Transmission Upgrades	Concept
20 FAC-008 Long Term Remediation Project (2016-2022)	Concept
017	
21 North Haven 115/13.8 kV Transformer Replacements (LTC's)	Concept
019	
22 New Fairfield 115/13.8 kV Substation	Concept
022	
23 SWCT, Barnum - Devon Tie 115 kV RR Line Reconductoring/Upgrade	Concept

- Lineman's and Cableman's Handbook 12th Edition ISBN 0071742581 / 9780071742580
- Electric Power Distribution Handbook ISBN 0849317916 / 978-0849317910
- Standard Handbook for Electrical Engineers, 5th Edition ISBN 9780071441469

