



#### Webinar

# Approaches to Utility Resilience: Creating an Energy Sector that is Prepared for the Unexpected

Organized by United States Energy Association 16<sup>th</sup> June, 2020, 1830 – 2000 hrs IST

### R.K. Porwal

Sr. GM (System Operation), POSOCO, India

page 1







- national synchronous grid
- electricity generation
  electricity consumption
  installed generation capacity
  transmission system
- 4 wind generation
- 5 solar generation renewable energy generation
- 7 hydro generation

Source: IEA Key World Energy Statistics 2019 (2017 data, 2018 provisional data)

INDIAN POWER SYSTEM 16 June 2020 page 2





## **Dimensions**

370 GW+ generation capacity

182 GW+ peak demand

> 4 TWh daily energy met

425,000 ckm+

renewables

~ 100 GW inter-regional capacity

3.2 million km<sup>2</sup> 1.3 Billion+ people served

**3 GW+** 

international exchanges

power

120 TWh+ annual market trades

exchanges

50,000+ market transactions

6000+ market participants

**INDIAN POWER SYSTEM** 

16 June 2020



## POSOCO: Focal Point of Indian Power Sector







### India – Natural Disasters

Unique Climatic Regime

Two monsoon seasons (southwest & northeast monsoons)

Two cyclone seasons (pre & post monsoon cyclone seasons)

Hot weather season characterised by violent convective precipitation

Cold weather season characterised by violent snow storms in the mountains



58 % of landmass prone to earthquake of moderate to

very high intensity



12 % of landmass prone to flood and river erosion.



15 % of land mass is prone to land-slides and avalanches

Source: www.portal.gsi.gov.in







## Damage to Power Infrastructure







Natural Disasters in Recent History which impacted Electricity Grid in India

#### **Cyclones**

- Phailin (2013)
- Hud-Hud (2014)
- Vardah (2016)
- Titli, Gaja (2018)
- Fani, Bulbul (2019)
- Amphan (2020)
- Nisarga (2020)

#### **Floods**

- Uttarakhand (2013)
- Chennai (2015)
- Assam (2016)
- Chennai(2017)
- Kerala (2018)
- Karnataka(2019)
- Kerala(2019)
- Pune(2019)
- Vadodara(2019)

| List of Major Earthquakes on India |                            |           |  |  |  |  |  |
|------------------------------------|----------------------------|-----------|--|--|--|--|--|
| Date                               | Location                   | Intensity |  |  |  |  |  |
| 10 April 2018                      | India                      | 4.6       |  |  |  |  |  |
| 03 Jan 2017                        | India, Bangladesh          | 5.7       |  |  |  |  |  |
|                                    | India, Myanmar,            |           |  |  |  |  |  |
| 04 Jan 2016                        | Bangladesh                 | 6.7       |  |  |  |  |  |
|                                    | Afghanistan, India,        |           |  |  |  |  |  |
| 26 Oct 2015                        | Pakistan                   | 7.7       |  |  |  |  |  |
| 12 May 2015                        | Nepal, India               | 7.3       |  |  |  |  |  |
| 25 April 2015                      | 25 April 2015 Nepal, India |           |  |  |  |  |  |
| 01 May 2013                        | Kashmir                    | 5.7       |  |  |  |  |  |



## Impact due to Earthquake on 10th April, 2018



Richter scale: 4.6





## Cyclone Amphan



- Super Cyclonic Storm named 'Amphan' 20 May 2020
- Wind speed of more than 120 kmph
- West Bengal and Odisha affected
- Generation Loss: 260 MW
- Stations affected: 400 kV: 5, 220 kV:11, 132 kV: 13, 33 kV: 280 +
- Lines tripped: 400 kV :12, 220 kV : 17, 132 kV:40 +









#### Approach for Resiliency



## Long Term: Crisis & Disaster Management Plan (C&DMP) For Power Sector in INDIA

- Formulated in 2004 and updated in 2012 by Central Electricity Authority (CEA)
- Provide guidelines for assistance to utilities
- Inputs provided by experts and stakeholders
- Covers
  - planning,
  - quick response
  - recover from unexpected events and situations
  - ensuring safety of people, protection of environment, protection of installation
  - and restoration of power supply by utilities

**Nodal Agency:** National Load Despatch Centre (NLDC) for Power Sector

#### **Operation**

- Wide dissemination of forecast on cyclones:
  - Trajectory
  - Timing of the landfall by the IMD
- Unit Commitment and rescheduling of critical Generation
- Reduction of the power flow on likely affected transmission
- Toggling of HVDC Links
- Movement of ERS Towers/additional equipment as well as Emergency Response Teams at all critical sub-stations
- Emergency Response Teams at NLDC / RLDC / SLDC (System Operator)
- Precautionary Interventions/Curtailment in Electricity Market
- Advance plans for restoration of the distribution network

#### **Real Time Coordination:**

Visualization of faults through Phasor Measurement Units (PMUs)

## **USEA** Logistics and Coordination for Resiliency



- Recovery equipment and spares inventory
- Communication facilities
- Transport and Mobility arrangements
- Financial resources
- Dewatering pumps
- Mobile Diesel Generator (DG) sets
- Emergency Restoration System (ERS) for transmission
- Black start facilities
- Regular check up for healthiness and regular drills
- Annual safety audit
- Regular interaction with disaster management groups



### **ENHANCING POWER SYSTEM RESILIENCY**



#### **Damage Prevention**

- Strengthening of transmission towers
- Cyber Security Measures
- Vegetation Management
- Planned maintenance
- Selective underground cabling
- Keeping:
- Emergency Restoration System (ERS) for transmission
- Recovery equipment and spares inventory

#### System Recovery

- Quick Damage assessment
- Movement of restoration teams to pin point locations
- Early restoration of important centers
- Satellite based area assessment and communication system
- Effective use of Real time security desk
- Spare equipment strategies
- Black start facilities
- Effective use of weather information provided by metrological department.

#### **Future**

- More distributed generation options such as fuel cell, solar PV & wind to enable urgent services to mobile phones, hospitals and traffic lights.
- Switching of mobile network from local to satellite system.
- Grid forming based solar and wind plants.
- Research on high impact low frequency events.
- Enhancing reliability of Nuclear Power plants.



### **ENHANCING POWER SYSTEM RESILIENCY**



#### Generation

#### **Transmission**

#### Distribution

- Design to minimize damage
- Advance Fuel supply and storage system
- More interconnection lines for plants.
- Black Start capabilities
- Protection from Malware attacks
- Bringing in more flexibility

- Protection from cyclone, flood, earthquake and high winds.
- Selective underground cabling
- Protection Relay redundancy
- Vulnerability assessment based on real-life examples
- Online monitoring of spare components
- Protection from Cyber attacks

- Reinforcement from overhead distribution system
- Distributed Storage system
- Underground cabling in targeted important areas
- Decentralized restoration system
- Distributed Generation
- Smart Grid technology
- Online health Monitoring of assets at station level





## Indian grid operation after Covid-19 pandemic outbreak



22 March 2020

Janta curfew



25 March - 14 April 2020 extended to 31 May 2020

Complete India lockdown



**5th April 2020** 

Pan-India lights switch off for 9 minutes @ 9 PM



## Advisory/Guidelines pan-India control centres



#### **General sanitization & social distancing protocols**















Personal hygiene

Stay at home

Social Distancing

**Travel Advisory** 

Teleworking

Keep objects and surface clean

Wearing PPE

#### **Ensuring continuity of load despatch centre operations**



Strategic Oversight / **Tactical Teams** 



Critical Staff for **Core Functions** 



Lockdown Travel Permission



Health Monitoring of Control Room Staff



**Temporary Control** Room in same premises



Cyber security



Remote access

#### Impact on reliability of electricity grid







Identification of reserve manpower /roster depth



Load forecasting/ demand variation



Maintenance (Planned) / Forced \_outage\_of G\_&\_T\_



Fuel stock monitoring



Transmission capability & grid



Generation unit availability and \_security\_\_\_\_\_reserves

NERC Report on High-Impact, Low-Frequency Event Risk to the North American Bulk Power System June, 2010

https://www.energy.gov/sites/prod/files/High-Impact%20Low-Frequency%20Event%20Risk%20to%20the%20North%20American%20Bulk%20Power%20System%20-%202010.pdf



## All India load curve on Janta curfew day compared to previous day/week





All India

Reduction in energy consumption ~ 300 GWh

Peak demand suppressed ~ 20 GW

Compared to previous Sunday (15<sup>th</sup> March, 2020)

Commercial load reduction

| ſ |               | Energy Consumption ( GWh ) |         |          |         |               |           |
|---|---------------|----------------------------|---------|----------|---------|---------------|-----------|
|   | Date          | Northern                   | Western | Southern | Eastern | North Eastern | All India |
|   |               | Region                     | Region  | Region   | Region  | Region        |           |
|   | 15-March-2020 | 774                        | 1119    | 1061     | 345     | 39.82         | 3339      |
| G | 22-March-2020 | 739                        | 977     | 965      | 319     | 35.10         | 3035      |



## 25 March - 14 April 2020 extended to 31 May 2020 Complete India lockdown







- All India energy consumption at the start of lock down period is less by 20-30 % compared to normal day
- Percentage reduction in energy met is highest for NR followed by Western region and Southern region
- Energy reduction > 30 % Uttarakhand, HP, AP, Telangana, TN, Arunachal, Assam and Meghalaya.
- Consumption kept on increasing with rise in temperature due to upcoming summer.



## Actual All India demand during lights switch off event





The total reduction in all India demand recorded during the event was **31089 MW**.

All India demand started reducing from 20:45 Hrs and minimum demand of 85,799 MW was recorded at 21:10 Hrs.

Subsequently, from 21:10

Hrs, the demand started picking up and settled around 114400 MW at 22:10 Hrs.



## Generation Profile during lights switch off event on 05th April 2020





- 22 % hydro generation on 05<sup>th</sup> April, 2020 as compared to 16 % on previous day at 2045 hrs (
- 9 % of hydro generation on 05<sup>th</sup> April, 2020 as compared to 16 % on previous day at 2110 hrs (\$\square\$)

https://posoco.in/wp-content/uploads/2020/05/Report-on-Pan-India-Lights-Off-Event-9-PM-9-Minutes-on-5th-April-2020-1.pdf





## Resiliency: Covid-19

- Shutdown of costly Generation
  - Low prices in the market
- Incentives for flexibility: Ramping
- Focus of hydro generation and pumped storage
- Starting of Real-Time Market from 1<sup>st</sup> June 2020
- Expansion of Security Constrained Economic Dispatch
- Renewable Energy Management Centres
- Government of India intervention and support





"Faith is the bird that feels the light and sings when the dawn is still dark." – Rabindranath Tagore

