

Rare Earth Element
Extraction and
Concentration at Pilot
Scale from North Dakota
Coal-Related Feedstocks

Nolan Theaker Research Engineer University of North Dakota

Partners:

Microbeam Technologies Inc.
Barr Engineering
Rare Earth Salts
North Dakota Geologic Survey

August 2020

1 | Office of Fossil Energy fossil.energy.gov

PROJECT OBJECTIVES AND SUPPLY CHAIN

- Develop cost-effective, market-supported REE/CM from pre-combustion low rank coal resources
 - Lignite (ND, MT, TX, LA)
 - Subbituminous (PRB in WY)
 - Feedstock contains high magnet and electronicSneeded RFE and CM
 - Germanium, Gallium, REE for magnets
- Confirm technology at the pilot scale 500 kg/hr of cleaned coal feed
 - ~100 grams/hr of REE concentrate production
- Technology goal: Become new supplier of magnet REE and high-impact CM

Bench-Scale System for REE Extraction

PROJECT DISCUSSION - OVERVIEW

- Technology utilizes pre-combustion low rank coals for selective extraction of the REE and CM
 - Low rank coal younger, less-carbonized coal
 - Applicable to organic-associated sediments
 - REE/CM extractable at low acid concentrations
 - Able to tune extraction to specifically avoid certain impurities (U & Th)
- Proven ability to extract up to 80-90% of contained
 REE
 - Extractions of costly impurities below 15%
- Generates a higher-value coal product for valueadded use
 - Activated Carbon Water Purification (\$1/lb)
 - Humic Acid Organic Fertilizer (\$1/lb)
 - Low-Fouling Combustion Fuel

Image courtesy of Lignite Energy Council, Jacobi Carbons

PROJECT DISCUSSION - PRODUCTS

Project Specific

- Generate 20+ kg of mixed rare earth oxide
 (REO) concentrate at >65% purity
 - Enough for all REE-bearing components of an electric vehicle
- Most to be separated into individual REOs by Rare Earth Salts
- Coal to use is blend from active mines and high REE coal seam in ND

Technology Targets

- Produce REO concentrates at >90% purity and identify US-based separations for refining
- Generate separated, purified GeO₂ and Ga₂O₃
 streams for electronics use

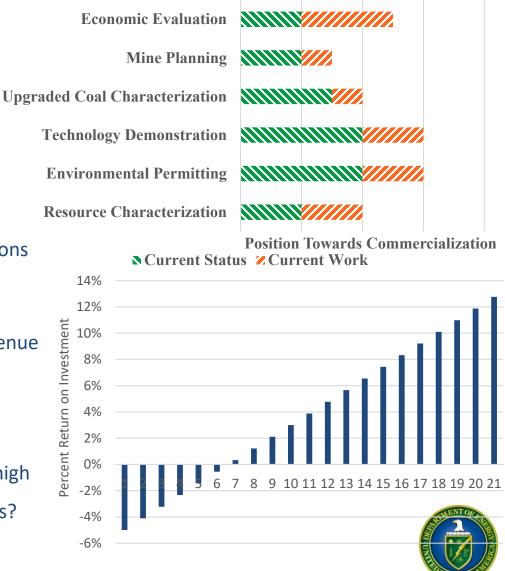
Produced MREO Concentrate

ENVIRONMENTAL IMPACTS

- Selective element extraction prevents significant radioactive material upcycling
 - Uranium and Thorium often behave chemically as the REE
 - UND process specifically prevents most NORM leaching
 - Process sludges and wastewaters have very low NORM content
- Utilizes small amounts of dilute acids at ambient conditions
 - No high-temperature acid baking required for REE extraction
 - Extraction method is very water lean, <2:1 water/coal ratio usable for process

PERMITTING PROJECTS

- Feedstocks sited from active mines are first goals
 - No mine permits required
 - Take advantage of existing infrastructure, minimal transport
 - Must be distinct from mine
- Future goal: new mines at high-grade resources
 - Mine permitting required (up to 10 years)
- Radioactivity (NORM)
 - Minimal NORM extraction from coal reduces likelihood of placement with REE
 - Upgraded carbon product will retain this NORM
 - Regulation on coal vs REE vs "standard" may be challenging


Image courtesy of Lignite Energy Council

SCALING UP TECHNOLOGIES

- Technological Scale-Up Risk
 - Equipment and chemicals
 - Pilot Testing (May 2021)
- Economic Scale-Up Risks
 - REE/CM Market Manipulation?
 - Byproduct of upgraded carbons
 - Is process economic?
 - \$100/ton processed net revenue
 - 7.5 ton/hr coal feed plant
- Resource Scale-Up Risks
 - Does an adequate resource with high confidence exist in large quantities?
 - More information needed

CONTACT INFORMATION

Co-PI: Mr. Nolan Theaker nolan.theaker@und.edu
(701)-777-6298

PI: Dr. Michael Mann
michael.mann@und.edu
(701)-777-3852

