Report on Co-utilization of Coal and Mixed Scrap Plastics via Syngas Production with Carbon Capture, Utilization, and Storage

RR

Em

March 24, 2022

Team: Brandon Webster, Deepti Krishnan Nair and Priya Ravi Ganesh

Acknowledgements

Project funded by United States Department of Energy (USEA) under Cooperative Agreement # DE-FE0031812 with the U.S. Department of Energy - Office of Fossil Energy and Carbon Management

State-of-the-Art and Future Steps

Overview

Introduction Stage-Setting and Goals

Introduction Problem Description

- Growth in plastics continues with packaging as a significant and growing contributor
- We have made progress, but plastic is still seen as waste product and not a valuable resource

Introduction Problem Description

- Need a fundamental conceptual shift from "plastics are waste" to "plastics are valuable resource"
- Progression from linear to circular typically happens in stages
- The US currently recycles only 8.7% of plastics

Introduction Problem Description

- Primary recycling can only be done with clean scrap
- Secondary recycling is limited to single polymer plastics and is energy intensive
- Tertiary recycling uses gasification and other processes to create syngas – more complicated but creates higher value products
- Quaternary recovers energy from the plastic by incineration – potential emissions issues

Global Strategies for Plastic Waste

- EU, Japan have stringent restrictions on PSW disposal and advocate circular plastics economy.
- EU directive to reduce use of single-use plastics and their landfilling.

- Co-gasification as a Potential Solution
- Carbon Capture Utilization and Sequestration
- State-of-the-Art and Future Steps

Introduction

Co-Gasification as a Potential Solution *Background*

Gasification

- Chemical recycling treatment technology
- Pure plastic feedstock
- High calorific value, low moisture, low ash content of plastics desirable
- Operational problems that chokes equipment

Co-gasification

- Chemical recycling treatment technology
- Mixed, various feedstock options
- Control product gas specification by blending plastics with other carbonaceous feedstock
- Emerging versatile technology

Co-Gasification as a Potential Solution *Technology Description*

- Plastic waste can be added to mature technologies such as coal (and/or biomass) gasification without major changes to the process.
- Co-gasification has been studied by researchers at the laboratory and pilot scales for the utilization of wastes with coal and biomass.
- Main operations involved:

Co-Gasification as a Potential Solution *Versatile Syngas Product*

Syngas is a fundamental building block for versatile applications.

Co-Gasification Feedstock Combinations

Process versatility and potential synergies with different feedstock combinations has encouraged the study of plastic waste co-gasification.

Co-Gasification *Process Parameters*

Process parameter conditions drive product yield and gasification performance.

Co-Gasification *Gasifier Types*

Co-gasification of coal and biomass has been sufficiently demonstrated globally using all three types.

Co-Gasification Effect of Feedstock Blends

Example investigation of the effect of feedstock blends on performance metrics such as gas composition and undesirable tar content.

Co-Gasification *Key Research Findings*

- In general, a high H₂ content and heating value, low char yield and tar content, and high gas yield is desirable.
- Optimal process considerations typically depend on the use of the exit gas (product synthesis gas).
- The H/C ratios in plastics and lignite played an important role in the synergistic effect in co-gasification.

Feedstock/Blend Ratio	Gasifier Type	Temperature	Catalyst/Bed Material	Gasifying Agent	Syngas Quality	Co-Gasification Performance	Reference
Coal (60 wt.%), biomass (20 wt.%), plastic (20 wt.%)	Air gasified bubbling fluidized bed (BFB) reactor	850°C	Silica sand with dolomite catalyst	Air	H ₂ : 7–15% CO: 10–20% CO ₂ : 14–23% CH ₄ : 2–10%	Gas yield: 3 m ³ n/kg feedstock Tar: < 0.5 g/Nm ³	(Aznar et al., 2006)
Coal (60 wt.%), pine (20 wt.%), PE plastic (20 wt.%)	Fluidized bed	850-900°C (890°C)		Air/Steam	H ₂ : 39.8 vol% CO: 17.3 vol% CO ₂ : 20.4 vol% CH ₄ : 14.9 vol%		(Pinto et al., 2003)
Coal, PE plastic	Dual fluidized bed	850°C	Olivine bed material	Steam	H ₂ : 40.4–49.4 vol% CO: 20.3–29.5 vol% CO ₂ : 3.6–12.9 vol% CH ₄ : 4.4-15.6 vol%	Tar: 0.8-11.2 g/Nm ³	(Kern et al., 2013)
Coal, plastics, wood Coal (50 wt.%), mixed plastics	BFB	850°C	Quartz sand bed material	Oxygen- enriched air	H ₂ : 13.8 vol% CO: 19.3 vol% CO ₂ : 16.3 vol% CH ₄ : 6.0 vol%	Tar: 13.5–21.8 g/Nm ³	(Mastellone, Zaccariello, & Arena, 2010)

State-of-the-Art and Future Steps

Overview

Introduction

Plastics co-gasification facilities would release significant amounts of CO₂.

CCUS = Economic Benefit + Environmental Benefit

Coupling a CCUS system enables CO_2 removal and redirects it either to a process that utilizes the CO_2 or into permanent geologic storage.

Well-established commercial implementation of flue gas capture and geologic storage spans multiple decades.

CO_2 Storage Resources for Geologic Storage Sites											
RCSP or Geographic Region	CO2 Stationary Sources		CO ₂ Storage Resource Estimates (billion metric tons of CO ₂)								
	CO2 Emissions (million metric tons per year)	Number of Sources	Saline Formations		Oil and Gas Reservoirs			Unmineable Coal Areas			
			Low	Med***	High	Low	Med***	High	Low	Med***	High
BSCSP	115	301	211	805	2,152	<1	<1	1	<1	<1	<1
MGSC	267	380	41	163	421	<1	<1	<1	2	3	3
MRCSP	604	1,308	108	122	143	9	14	26	<1	<1	<1
PCOR*	522	946	305	583	1,012	2	4	9	7	7	7
SECARB	1,022	1,857	1,376	5,257	14,089	27	34	41	33	51	75
SWP	326	779	256	1,000	2,693	144	147	148	<1	1	2
WESTCARB*	162	555	82	398	1,124	4	5	7	11	17	25
Non-RCSP**	53	232									
Total	3,071	6,358	2,379	8,328	21,633	186	205	232	54	80	113

Source: U.S. Carbon Storage Atlas - Fifth Edition (Atlas V); data current as of November 2014

* Totals include Canadian sources identified by the RCSP

** As of November 2014, "U.S. Non-RCSP" includes Connecticut, Delaware, Maine, Massachusetts,

New Hampshire, Rhode Island, Vermont, and Puerto Rico

*** Medium = p50

Numerous established and emerging technologies could provide additional pathways to new products using the CO_2 captured from plastics co-gasification.

Co-gasification as a Potential Solution

Overview

Introduction

- Carbon Capture Utilization and Sequestration
- State-of-the-Art and Future Steps

State-of-the-Art and Future Steps Resource & Market Potential

Abundance of plastic waste – Only 8.7% recycled in 2018

States with coal reserves can use plastic waste for cogasification

Co-gasification resulting in a versatile product syngas

Coupling co-gasification with a CCUS to reduce GHG emissions

State-of-the-Art and Future Steps Technical Challenges

- Feedstock preparation and post-processing cleanup operations.
- More complex due to combination of multiple feedstocks

State-of-the-Art and Future Steps Non-Technical Challenges

State-of-the-Art and Future Steps Existing Facilities

Operational facilities around the world with plastics feedstock component

Company	Project Name, Location	Status	Plant Capacity	Feedstock	Output
Sierra Energy	FastOx Pathfinder, Fort Hunter Liggett, California, USA	Operational since 2018	10 tonnes per day gasifier capacity	MSW and biomass	Electricity and Fischer- Tropsch Diesel (FTD)
Fulcrum	Sierra Biofuels Plant, Reno, Nevada, USA	Construction completed in July 2021; full operations in Q4 2021	480 tonnes per day	MSW	Synthetic crude for transportation fuels
JGC Group	Showa Denko plant, Kawasaki, Japan	Operational since 2003	192 tonnes per day	Plastic waste	Syngas for chemical products like ammonia
Enerkem	Enerkem Alberta Biofuels, Edmonton, Alberta, Canada	Operational since 2017	274 tonnes per day (dry)	MSW	Ethanol

MSW- Municipal Solid Waste

State-of-the-Art and Future Steps *Ongoing Research Efforts – DOE/NETL*

Adapted from National Energy Technical Laboratory (NETL), 2019

DOE's Office of Fossil Energy and Carbon Management

State-of-the-Art and Future Steps Policy Framework

Policy framework drivers that support commercialization

- Reframe landfill policies
- Awareness at the City/Municipality-level on PSW management
- Federal/state initiatives can promote use of chemical recycling technologies for PSW
- Government, Coal and Plastic Industry consortiums can promote value recovery; evaluate the use of recylcates instead of virgin plastic

Summary Findings *Untapped Potential in the U.S.*

800.201.2011 | solutions@battelle.org | www.battelle.org