Can Algae Really Do CCU?

Status and Potential of Biological Carbon Capture and Use

USEA Technology Series

March 12, 2018

Matt Carr

Executive Director

mcarr@algaebiomass.org

Algae Biomass Organization

- ➤ Trade association for the algae industry (est. 2008)
- Over 200 corporate, institutional and individual members
- World's leading developers of algae-based technologies and products + their customers, suppliers and other industrial partners
- Host of Algae Biomass Summit, world's largest algae event (Oct 14-17, 2018, Houston, Texas)

THANK YOU TO OUR MEMBERS

Platinum Members

Gold Members

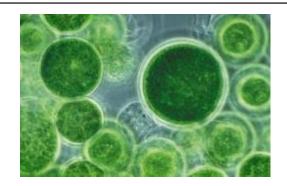
Color & Comfor

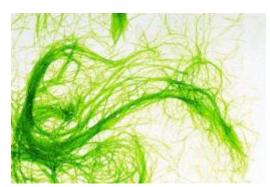
Silver Members

The Challenge

➤ Reduce GHG emissions from fossil power generation and other industrial sources...

Economically

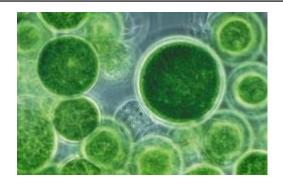


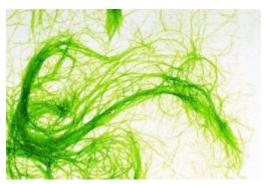


Algae

- Some of earliest life on Earth
- Highly diverse set of organisms
 - Estimated 50,000+ species
- Size: microscopic (microalgae)
 to large seaweeds (macroalgae)
 e.g. giant kelp
- ➤ Microalgae include:
 - Cyanobacteria (blue-green)
 - Green, brown and red algae

> Transformed Earth's early super-greenhouse atmosphere...





Algae

- Mostly photosynthetic
 - Sunlight + CO2 (autotrophic)
- Some feed on sugars...
 - Heterotrophic
- ...or do both
 - Mixotrophic

Algae

- Exceptionally fast-growing
 - Mature in days vs. months/years

> Exceptionally productive

Why Algae: Yield

Comparison of Feedstock Crops					
Plant	Average Biomass Yields (MT / ha / yr)	Oil Content (% dry mass)	Sugar / Starch Content (% dry mass)	Energy Content of Oil / Sugar / Starch (boe / 1000ha / day)	Protein Content (% dry mass)
Soy/Soy oil	1 - 2.5	20%	18%	3 - 8	37%
Rapeseed	3	40%	NA	22	23%
Palm/Palm oil	19	20%	NA	63	15%
Jatropha	7.5 - 10	30 - 50%	NA	40 - 100	24 - 28%
Corn	10 - 12	4%	75%	240 - 300	4 - 14%
Sugarcane	60 - 70	NA	12 - 16%	230 - 370	3 - 4%
Microalgae	100+	25 - 50%+	15 - 25%	330 - 785+	25 - 60%+

Why Algae: Sustainability

Lowest Carbon, Water, & Arable Land Footprints of Any Crop

Water Grain for Land Footprint Emissions Use Feed 1kg (Liters) (kg CO_2e) (m^2) (kg) 16 7.9 15,500 1.8 4.6 3,900 5.5 6.7 3,333 10.6 1,000 MILK 1.5 0.8 1.300 3,400 RICE < 0.25 Negative **ALGAE**

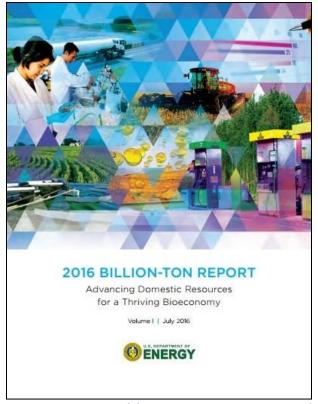
Sources: Water www.waterfootprint.org/?page=files/productgallery; emissions and land use UK DEFRA (2006), http://goo.gl/T12.ho; grain National Geographic, http://goo.gl/4CgFB; Algae, Cellana estimates

The Biological Capture and Utilization Opportunity

Algae

➤ CO2 eating machines...

The Biological Capture and Utilization Opportunity


- ➤ Can produce ...
 50-100 gallons biofuel per ton CO₂
- Product value from algae conversion:>\$100 / ton CO₂
- ➤ Today: Algae developers <u>buy</u> CO₂ (at \$40+ / ton) as a feedstock
- ➤ Industrial CO₂ Challenge + Algae =
 Opportunity

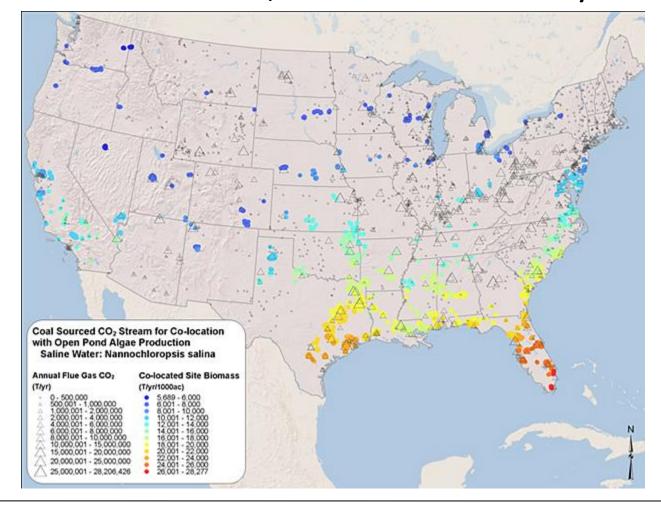
Co-Location Potential

> 2016 DOE/ORNL Analysis*:Substantial U.S. Potential for Algae CCU:

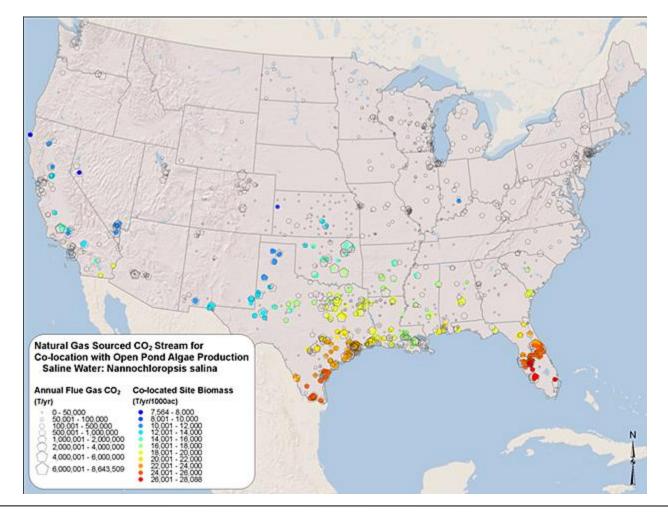
*2016 Billion-Ton Report https://bioenergykdf.net/billionton2016/overview

Co-Location Potential

- ❖ 140,000 sq. miles suitable for open pond production (≈75,000 farms)
- Even with highly conservative assumptions, using existing technology:
 - More than 500 viable point sources
 - Potential to utilize > 200 million tons
 CO₂ / year
- Much larger quantities possible beyond 2030, especially with CO₂ price/regulation

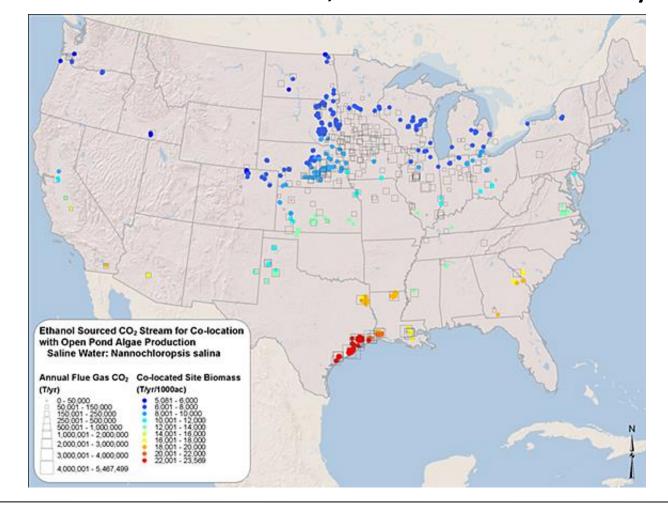

^{*2016} Billion-Ton Report https://bioenergykdf.net/billionton2016/overview

Billion Ton Study Algae Chapter Highlights


COAL - Saline Strain, Current Productivity

Billion Ton Study Algae Chapter Highlights

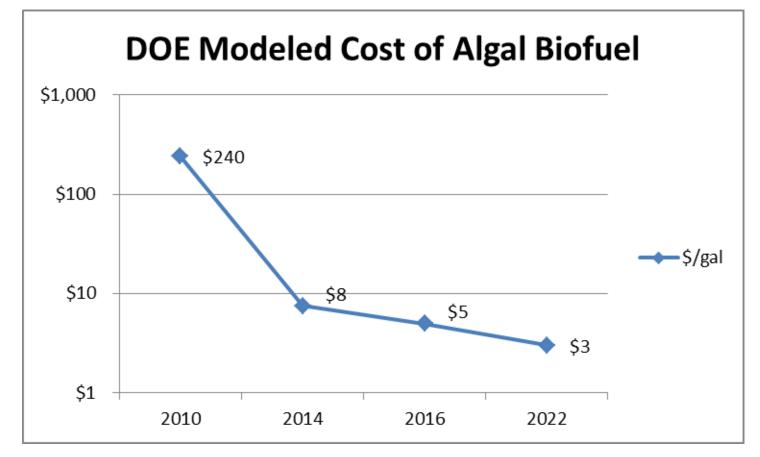
NATURAL GAS - Saline Strain, Current Productivity



Billion Ton Study Algae Chapter Highlights

ETHANOL - Saline Strain, Current Productivity

U.S. Algae Industry Progress


- > Technology Gains
 - Productivity, System Design
- **➢ New Markets**
 - Food & Feed, Fuel, Fertilizer, High-Value Components
- > Global Partnerships
 - Investments from India, China
- > New Federal Policy Support
 - **❖** 45Q

Technology Progress

> Cost of Production Cut 98% in 7 years

Technology Progress

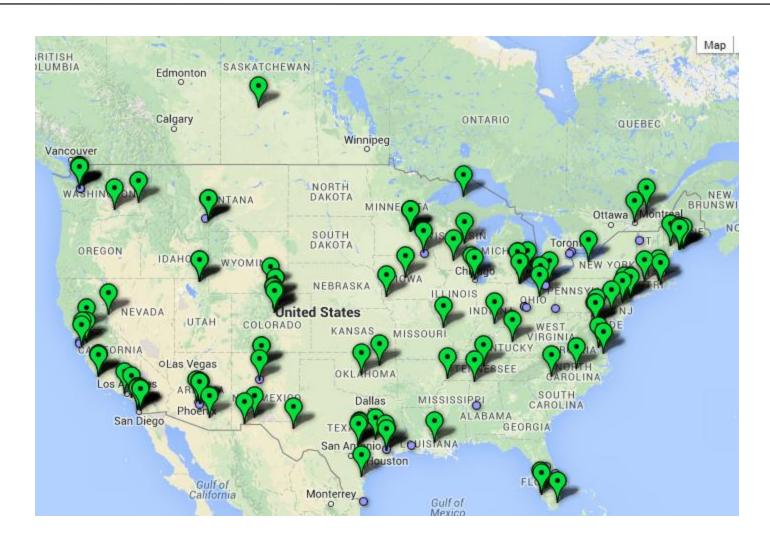
ExxonMobil, Synthetic Genomics last year announced doubling of algae productivity...

About Us

Core Technology

Bio-Based Production

ExxonMobil and Synthetic Genomics Report Breakthrough in Algae Biofuel Research


- Algae strain developed and modified by Synthetic Genomics more than doubled oil production
- · Additional research and testing required before commercial application
- Results published in peer-reviewed journal Nature Biotechnology

IRVING, Texas and LA JOLLA, Calif. – ExxonMobil and Synthetic Genomics Inc. today announced a breakthrough in joint research into advanced biofuels involving the modification of an algae strain that more than doubled its oil content without significantly inhibiting the strain's growth.

Algae Research and Commercial Facilities in U.S. and Canada

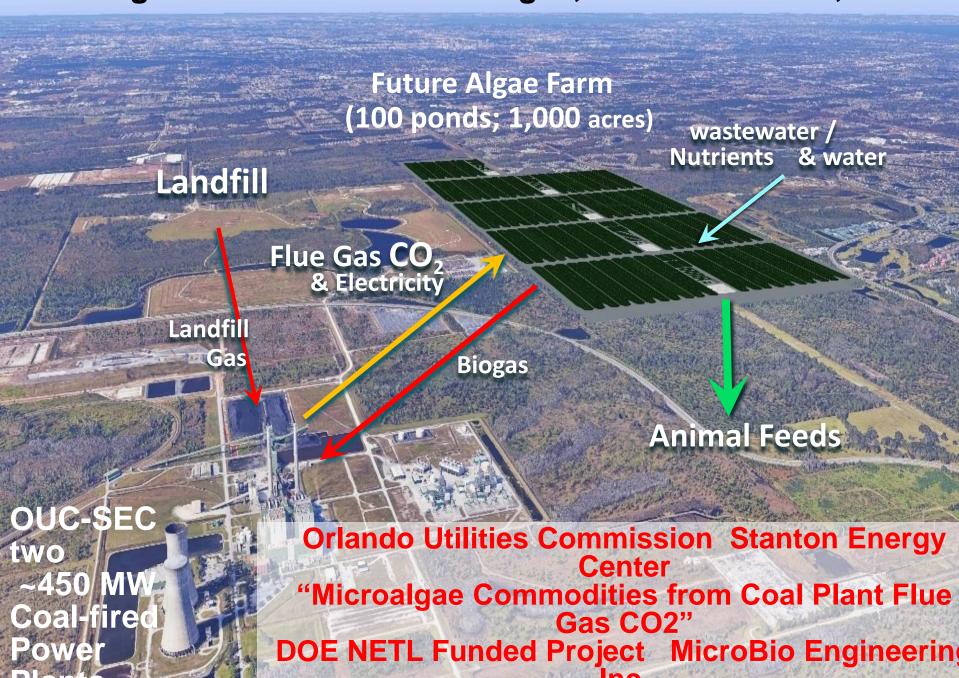
Technology Progress

- > DOE-funded integrated algae biorefinery commercial demonstration projects in:
 - Florida (Algenol)
 - New Mexico (Sapphire)
 - lowa (BioProcess Algae)

- Pilot / demonstrations with flue gas from variety of industrial sources:
 - Coal, other power plants
 - Cement, steel
 - Ethanol

Beneficial Re-use of Carbon Using Microalgae University of Kentucky / Duke Energy

- Pilot project at Duke's East Bend Coalpowered Generating Station
- Recently awarded 2nd
 \$1 million DOE Fossil
 Energy Grant


33-Acre Kauai Algae Facility

Microalgae CO2 Utilization → biogas, waste treatment, feeds

State of Algae Carbon Utilization Technology

➢ BioProcess Algae

- 5-acre commercial demonstration in Shenandoah,
 IA, co-located with Green Plains corn ethanol plant
- Continuous operation since 2009 utilizing waste CO2, waste heat, waste nutrients
- Markets: Fuel, fish/animal feed

State of Algae Carbon Utilization Technology

> Algenol Biofuels

- 2-acre commercial demonstration in Lee County, FL
- Pilot demo at Reliance petroleum refinery in India
- Received EPA approval as advanced biofuel with 69% GHG reduction vs. gasoline

Large-Scale Commercial Algae Farms in Production Today

Earthrise Nutritionals (est. 1982)

- Spirulina production on 100+ acres of ponds in Imperial Valley, California
- Exports to 20+ countries

Large-Scale Commercial Algae Farms in Production Today

Algae Life Sciences (China)

- 80 acres = > 1000 km of glass tube photobioreactors
- Astaxanthin for human nutrition, animal feed

Commercial Projects Around the World

Big Market Opportunities

- > Aquaculture Feed
 - ❖ 130 million tons, \$9B / yr

- Livestock Feed
 - ❖ 1B tons, \$370B / yr
- > Fertilizer
 - ❖ 180 million tons, \$90B /yr

Source: Bloomberg New Energy Finance Research Note 5 June 2015

Feed

➢ Omega-3 oils for Feed

Feed

Fish & Animal Feeds

Diverse & Successful Feed Trials

- Successful large-scale feed trial for Salmon, Carp, & Shrimp
 - Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp,
 V. Kiron (Bodo Univ.) et al., Aquaculture Nutrition, Vol. 18,
 Issue 5, pp. 521-531, Oct. 2012

- Cellana's ReNew Feed was acceptable for the three animals at the maximum levels tested (Salmon 10%, Carp 40%, Shrimp 40%)
- Successful large-scale feed trial for <u>Broiler Chicks</u>
 - Potential and Limitation of a New Defatted Diatom Microalgal Biomass in Replacing Soybean Meal and Corn in Diets for Broiler Chickens, Xin Gen
 Lei (Cornell) et al., J. of Agricultural & Food Chemistry, 61(30), pp. 7341-8, July 2013
 - Cellana's ReNew™ Feed could substitute for 7.5% of soybean meal alone, or in combination with corn, in diets for broiler chicks when appropriate amino acids are added
- Successful large-scale feed trial for <u>Broiler Chicks</u> and <u>Weanling Pigs</u>
 - Nutritional and Metabolic Impacts of a Defatted Green Marine Microalgal (Desmodesmus sp.) Biomass in Diets for Weanling Pigs and Broiler Chickens, Xin Gen Lei (Cornell) et al.,
 J. of Agricultural & Food Chemistry, 62 (40), pp. 9783–91, Sept. 2014
 - Broilers fed 15% Cellana's ReNew™ Feed had 16% greater gain/feed efficiency than the control diet over the 42-day period.

 Cellana

Food-Energy-Water Nexus

RESEARCH OPEN ACCESS

New feed sources key to ambitious climate targets

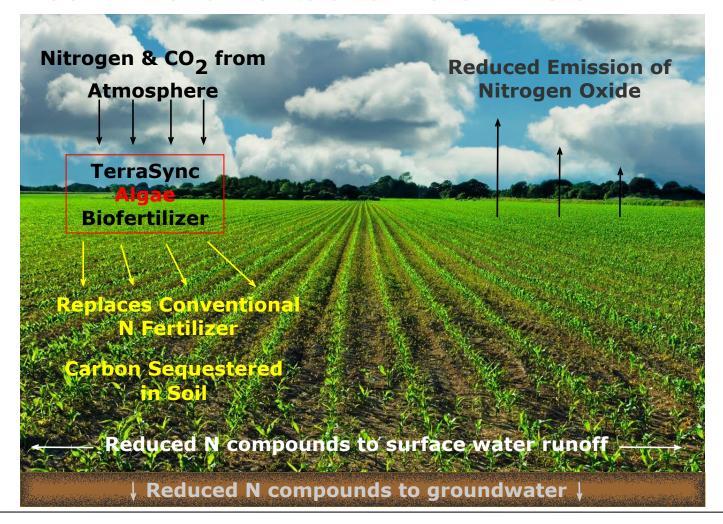
Brian J. Walsh (O), Felicjan Rydzak, Amanda Palazzo, Florian Kraxner, Mario Herrero, Peer M. Schenk, Philippe Ciais, Ivan A. Janssens, Josep Peñuelas, Anneliese Niederl-Schmidinger and Michael Obersteiner

Carbon Balance and Management 2015 10:26 | DOI: 10.1186/s13021-015-0040-7 | © Walsh et al. 2015 Received: 23 October 2015 | Accepted: 27 November 2015 | Published: 1 December 2015

Abstract

Net carbon sinks capable of acidification have been idea 2010). Land scarcity alread is likely to intensify as popul next-generation energy so overlooked. Here we use that of free up to 2 billion hectal these areas can conceivable energy and LULUC sectors and sequestration (CCS) to

"Used as feed, microalgal biomass can free up to 40 % of pastures, meadows, and feedcrop land. In this way, highly-productive algacultural technologies can be harnessed to offset the resource and environmental costs of rising demand for animal proteins... [T]his strategy is expected to reduce global temperature change 0.7C"


levels by the end of the present century. Though previously thought unattainable, carbon sinks and climate change mitigation of this magnitude are well within the bounds of technological feasibility.

Soil Health

Soil Amendments and Biofertilizers

Soil Health


Soil Amendments and Biofertilizers

200 Acre Algae Biofertilizer Demonstration – Arizona Farm

- Algae cultivated in simple PBR's adjacent to the melon field
- Algae distributed through drip irrigation system

Yosemite Melons	
Germination	2X
Early Growth	2.5X
Plant Size & Density	ЗХ
Early Melon Maturity	2X
Mature Melon Size	1.4X
Mature Melon Weight	1.5X
Taste (blind panel test)	14:1

Biobased Materials

Food

Plant-based proteins, oils and nutritional ingredients

High Value Components

Astaxanthin – Powerful antioxidant

Phycocyanin – First natural blue food color

Animal Health

- Therapeutic proteins and animal health
 - **Replacement for antibiotics agri-/aquaculture**

Nutrient Management

> Algae-based systems for N, P recycling

Macroalgae

Macroalgae

- Harvested/grown for food/feed in Asia for centuries
- Trending as sustainable food / feed ingredient
- Ecosystem services + jobs in coastal communities

Global Partnerships

Federal Policy Support

Carbon Utilization R&D

- \$\$ \$2 million in FY2015
 - Funded 2 pilot projects
- \$\$10 million in FY2016, FY2017
 - 2 additional algae awards
- ❖ Still 1/10 funding level vs. capture, storage

Federal Policy Support

> 45Q CCU Tax Credit

- Bipartisan Budget Act of 2018 extends existing section 45Q carbon capture tax credit and expands in several ways:
 - ✓ Adds up to \$35 / ton credit for non-geologic utilization, including: "fixation... through photosynthesis or chemosynthesis, such as through the growing of algae or bacteria."
 - ✓ Industrial and air capture facilities now eligible
 - ✓ Reduces minimum capture threshold to 25,000 tons/year for non-geologic use at small-to-midsize facilities (vs. 500,000 tons/year CCS/EOR)

Federal Policy Support

> 45Q CCU Tax Credit

Credit for non-geologic utilization based on LCA:

"shall be equal to the metric tons of qualified carbon oxide which the taxpayer demonstrates, based upon an analysis of lifecycle greenhouse gas emissions... were—

"(I) captured and permanently isolated from the atmosphere, or "(II) displaced from being emitted into the Atmosphere."

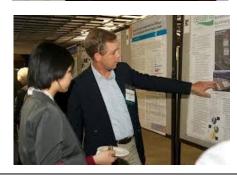
Policy Outlook

- Algae Well Aligned with Administration Priorities:
 - Manufacturing
 - Infrastructure

JOBS!

2018 Algae Biomass Summit

Oct 14-17, 2018, Houston TX



Matt Carr

mcarr@algaebiomass.org

