NETL's Updated Performance and Cost Estimates for Power Generation Facilities Equipped with Carbon Capture

Marc Turner NETL site support contractor

- Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity – Revision 4a
 - Published October 2022, available at https://www.osti.gov/biblio/1893822
- Generate an independent, public assessment of the cost and performance of select, state-of-the-art, fossil-fueled power-generation systems with and without CO₂ capture using a systematic, transparent, technical and economic approach
 - Primarily used for research and development (R&D) guidance and evaluation
 - Increasingly used directly by various organizations for system modeling efforts
 - Provides state-of-the-art reference data for regulators and policy makers

Limitations of Study Data

- Real projects will have a variety of location-specific factors that affect costs and require more extensive analysis and study (e.g., front-end engineering design (FEED) studies) to reduce uncertainty
 - Recently completed NETL funded FEED studies on CO₂ capture retrofits of natural gas power plants:
 - Bechtel (March 2022), available at https://www.osti.gov/biblio/1836563
 - Southern Company (September 2022), available at https://www.osti.gov/biblio/1890156
- Initial deployments of plants that include technologies that are not yet fully mature may incur costs higher than those reflected within this report (e.g., plants with Carbon Capture)

- Revision 4a
 - Incorporates recent (2021) post-combustion capture system performance and cost data from Shell CANSOLV
 - Revises 90 percent capture cases for pulverized coal (PC) and natural gas combined cycle (NGCC) plants
 - Adds higher capture rate cases to PC and NGCC plants
 - Adds H-class NGCC cases with and without capture
 - Includes miscellaneous minor updates to the cost and performance models

Study Assumptions

- Design basis is consistent with Revision 4 assumptions, including:
 - Location Generic Midwest site with International Organization for Standardization (ISO) ambient conditions
 - Applicable air and water regulations
 - 2018-dollar basis
 - Capacity Factors: PC and NGCC 85%
 - Capital cost estimation methodology,¹ fuel compositions,^{2,3} fuel costs,⁴ and CO₂ transport and storage (T&S) prices⁵
 - Fuel Costs:
 - Natural Gas \$4.19/GJ (\$4.42/MMBtu), on a higher heating value (HHV) basis
 - Illinois No. 6 Coal \$2.11/GJ (\$2.23/MMBtu), on an HHV basis
 - T&S Costs \$10 per tonne (\$9/ton) of CO₂

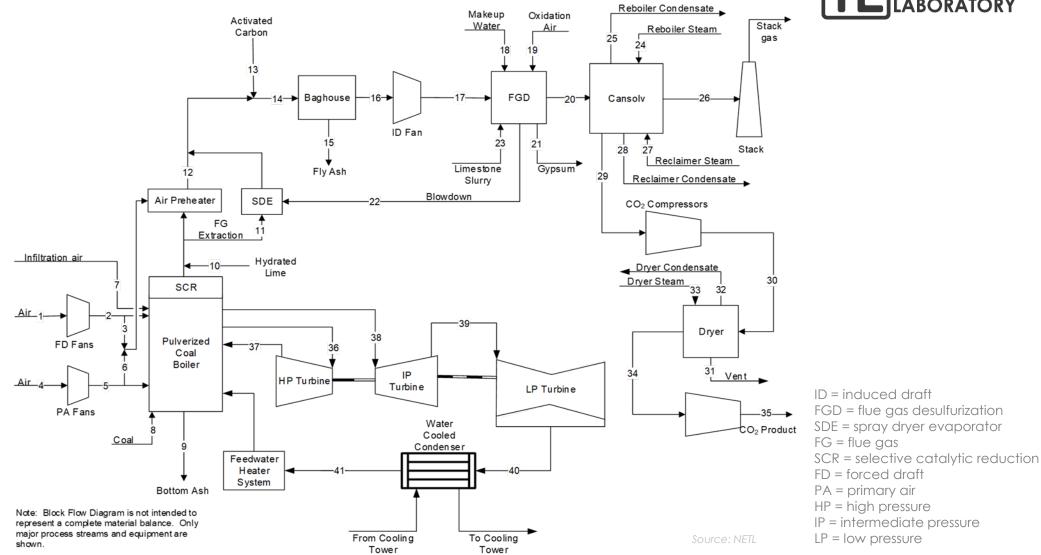
 ¹ NETL, "Quality Guidelines for Energy System Studies (QGESS): Cost Estimation Methodology for NETL Assessments of Power Plant Performance," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1567736</u>
² NETL, "QGESS: Detailed Coal Specifications," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1567737</u>
³ NETL, "QGESS: Specification for Selected Feedstocks," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1557271</u>
⁴ NETL, "QGESS: Fuel Prices for Selected Feedstocks in NETL Studies," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1557270</u>
⁵ NETL, "QGESS: Carbon Dioxide Transport and Storage Costs in NETL Studies," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1567735</u>

Cost Estimation Methodology¹

- Vendor-provided cost data for Shell's CANSOLV CO₂ capture system was adjusted for year dollar basis and scaled on capacity
- Vendor-provided cost data for H-class NGCC cases were adjusted for year dollar basis and consistency with F-class cost estimating methodology
- Balance of plant capital cost estimates for Revision 4a were scaled from those in the 2019 Revision 4 report using the methodology established in the relevant NETL QGESS² documents
- American Association of Cost Engineers (AACE) Class 4 estimate with an uncertainty range of -15/+30% for PC cases and -15/+25% for NGCC cases

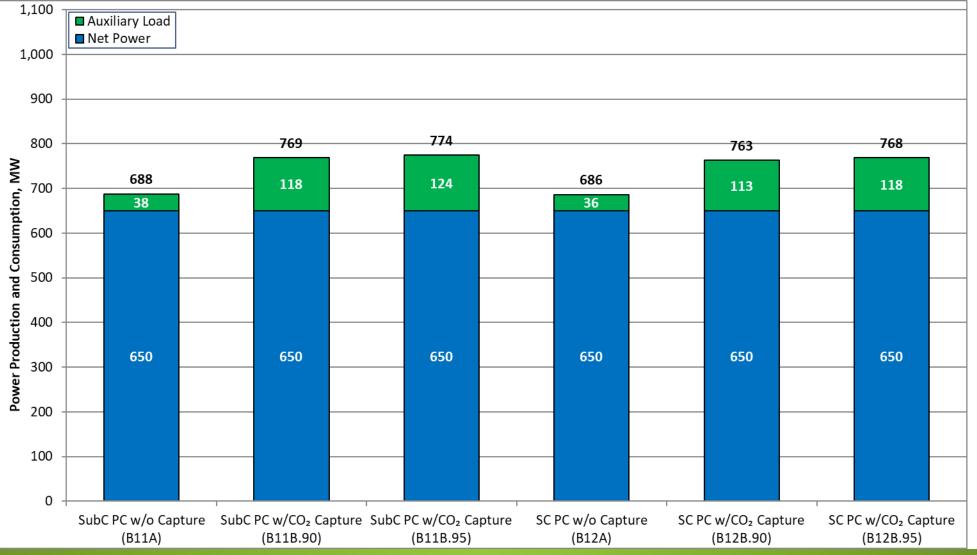
¹ NETL, "QGESS: Cost Estimation Methodology for NETL Assessments of Power Plant Performance," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1567736</u> ² NETL, "QGESS: Capital Cost Scaling Methodology," U.S. Department of Energy, Pittsburgh, PA, 2019. <u>https://www.osti.gov/biblio/1893821</u>

PC and NGCC Case Configuration Summary

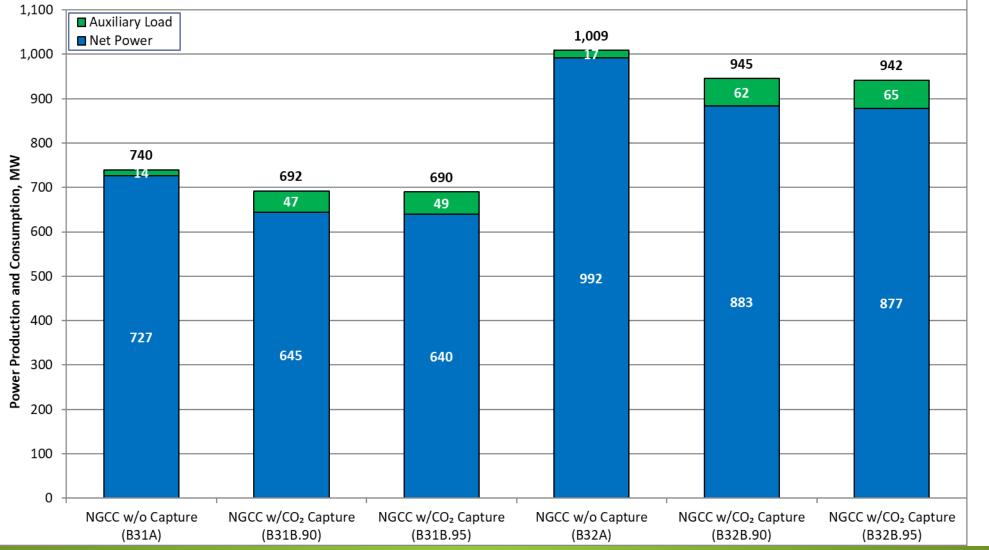


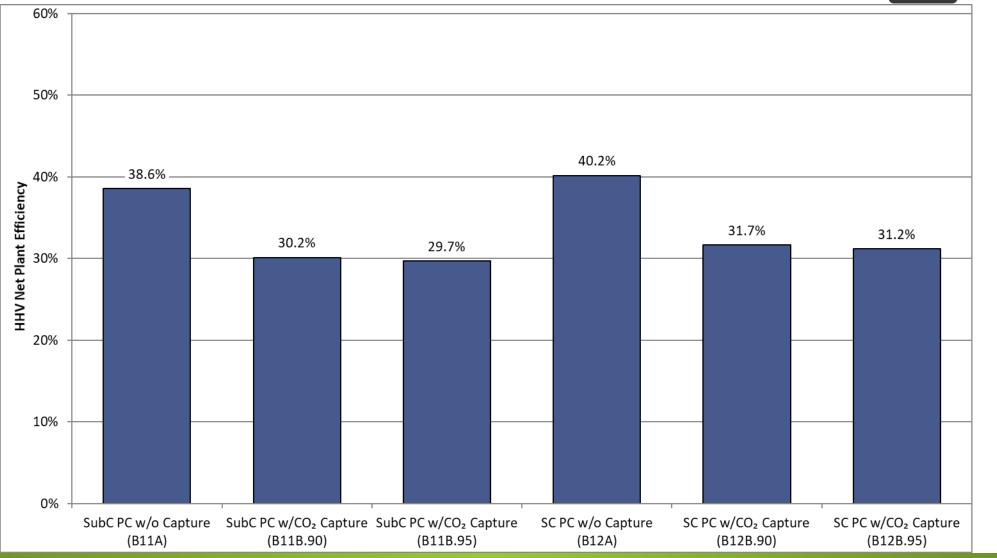
Case	Plant Type	Steam Cycle, psig/°F/°F	Combustion Turbine	Gasifier/Boiler Technology	Sulfur Removal	Particulate Matter Control	CO ₂ Separation	Capture Rate	Process Water Treatment
B11A						Baghouse	N/A	N/A	Spray Dryer Evaporator
B11B.90		2400/1050/1050		Subcritical (SubC) PC				90%	
B11B.95		2400/1030/1030					CANSOLV	95%	
B11B.99	PC		N/A		Wet Flue Gas Desulfurization/			99%	
B12A					Gypsum		N/A	N/A	
B12B.90		3500/1100/1100		Supercritical (SC) PC			CANSOLV	90%	
B12B.95		3300/1100/1100						95%	
B12B.99								99%	
B31A							N/A	N/A	
B31B.90	2 x State-of- 2378/1085/1084 the-art 2017					90%			
B31B.95		2370/1003/1004	F-Class		N/A	N/A	CANSOLV	95%	N/A
B31B.97	NGCC							97%	
B32A	NGCC			HRSG			N/A	N/A	
B32B.90		2668/1085/1044	2 x State-of- the-art 2017					90%	
B32B.95		2000/1003/1044	H-Class				CANSOLV	95%	
B32B.97								97%	

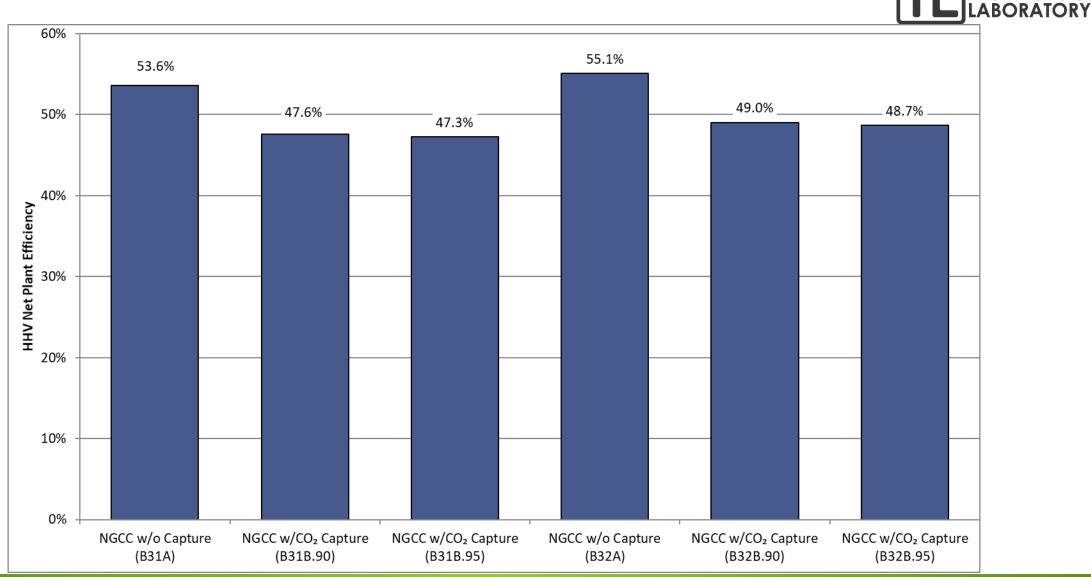
Block Flow Diagram – PC with CO₂ Capture



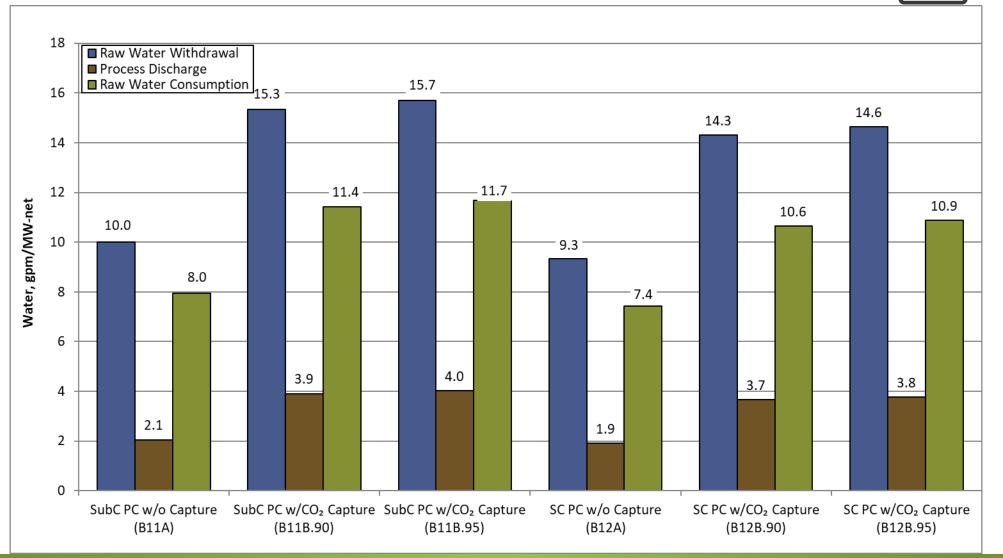
Block Flow Diagram – NGCC with CO_2 Capture NE NATIONAL ENERGY TECHNOLOGY LABORATORY Vent -15 Natural Gas CO₂ Compressors CO2 Product Dryer -16 CO₂ Compressors Dryer 13 Dryer Steam 12 Condensate Reboiler Condensate Reboiler Steam 6 Air HRSG CANSOLV Stack 21 Reclaimer Steam 18 10 20 Reclaimer Condensate HP IP Turbine Turbine LP Turbine Water Cooled Condenser 23 Note: Block Flow Diagram is not intended to represent a complete material balance. Only HRSG = heat recovery major process streams and equipment are shown. steam generator To Cooling From Cooling Tower Tower


PC Power Summary


NGCC Power Summary

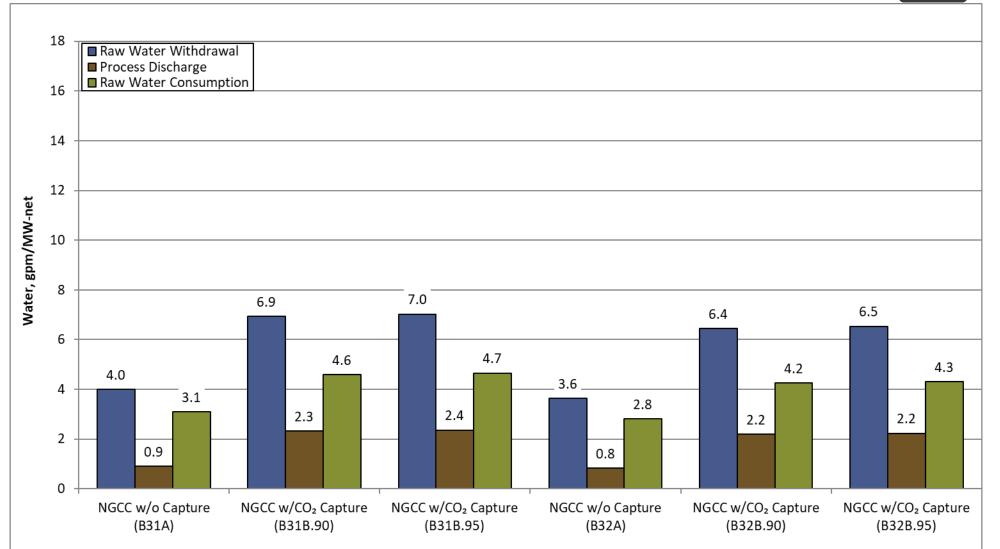

PC Net Plant Efficiency Summary

NATIONAL ENERGY TECHNOLOGY LABORATORY


NGCC Net Plant Efficiency Summary

NATIONAL ENERGY TECHNOLOGY

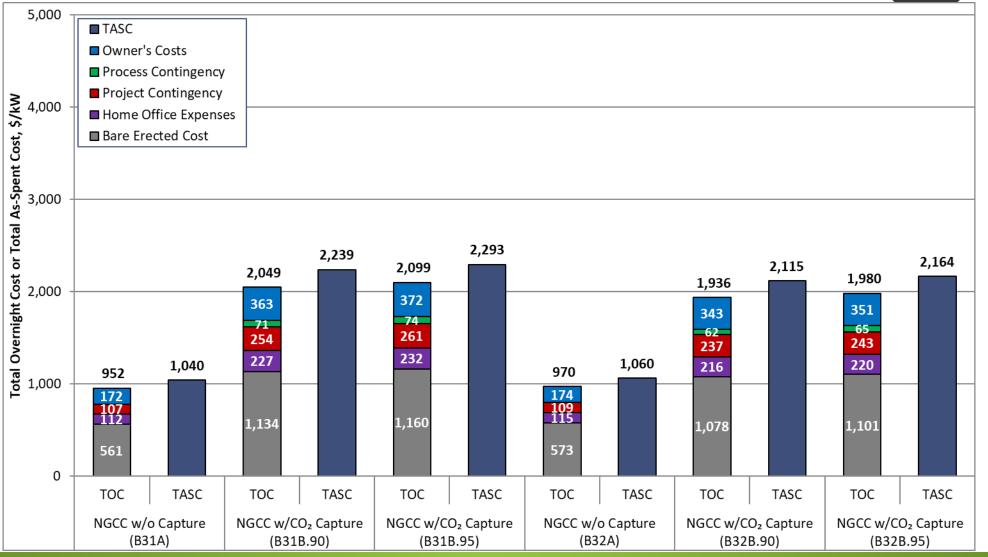
PC Water Summary



NATIONAL ENERGY

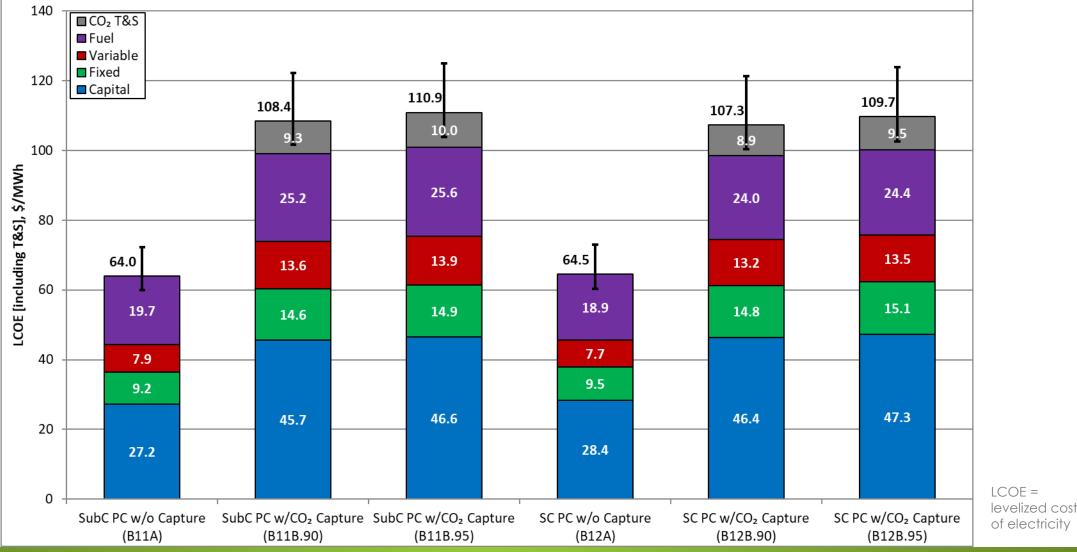
TECHNOLOGY LABORATORY


NGCC Water Summary


PC Capital Cost Summary

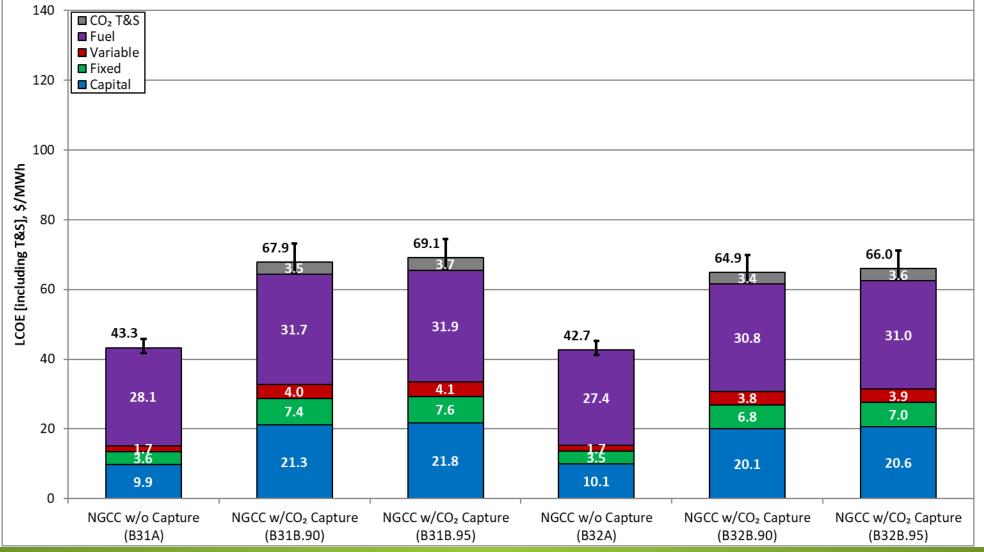
NATIONAL ENERGY

NGCC Capital Cost Summary

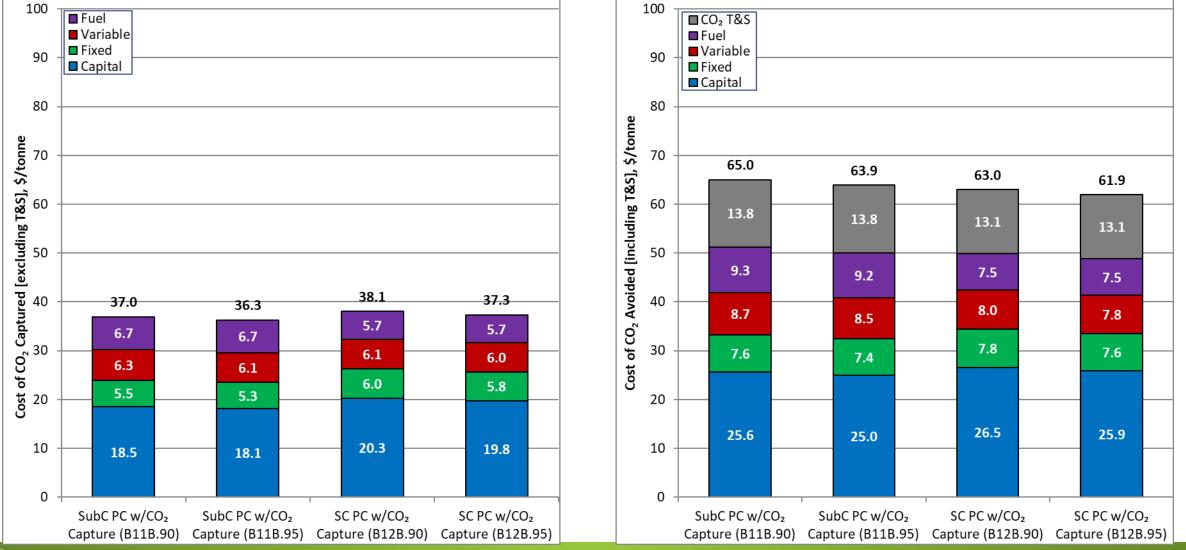


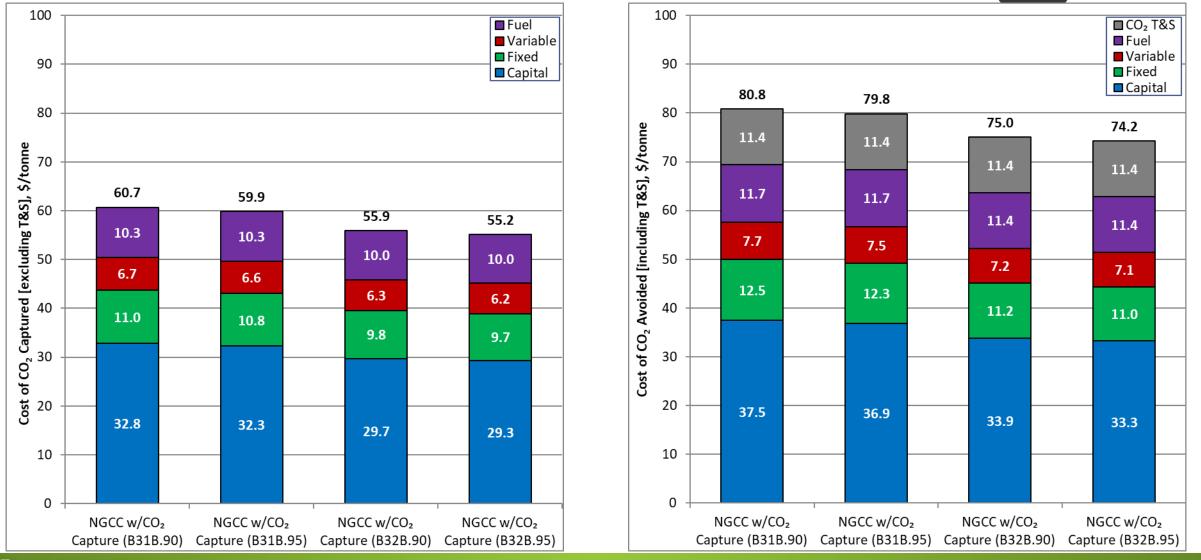
NATIONAL ENERGY

TECHNOLOGY LABORATORY

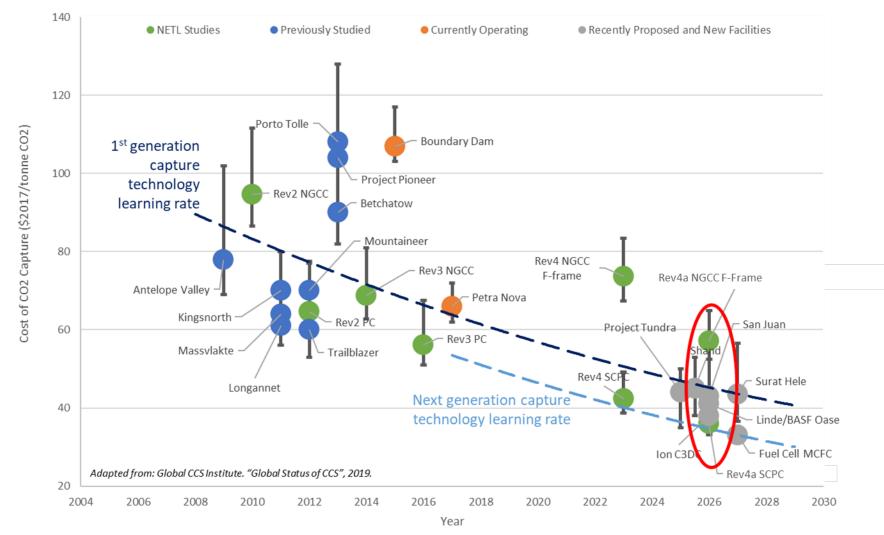

PC LCOE Summary

NGCC LCOE Summary



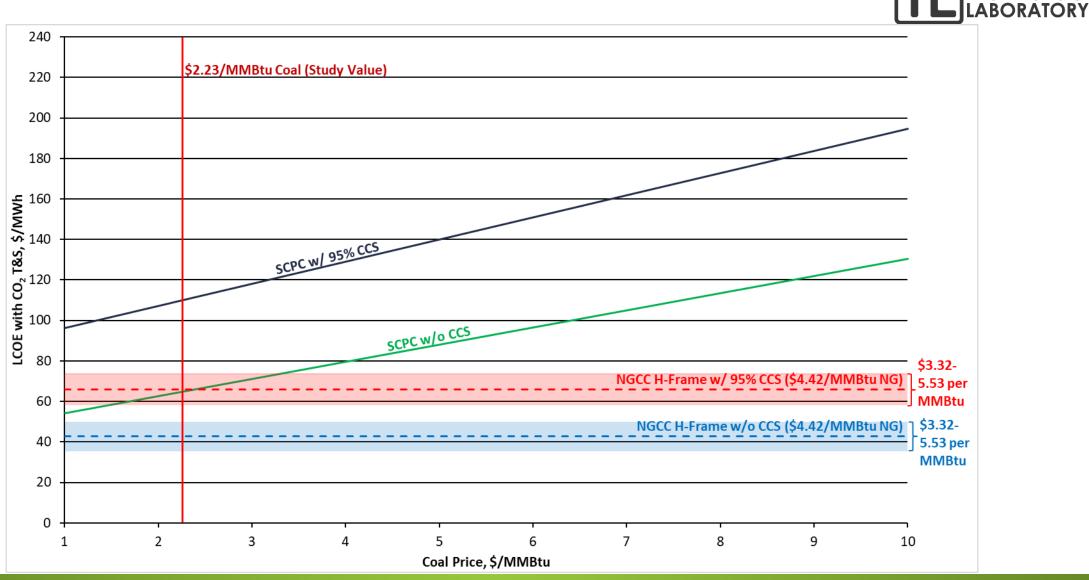

PC Cost of CO₂ Captured and Avoided

NGCC Cost of CO₂ Captured and Avoided



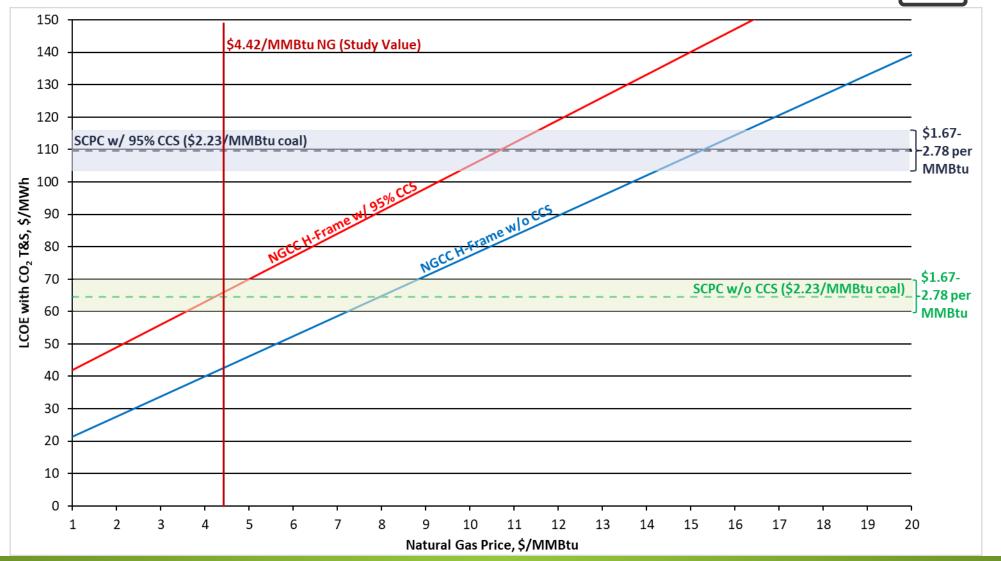
NATIONAL ENERGY TECHNOLOGY LABORATORY

Revision 4a Estimates in Context


Sensitivity to Capacity Factor

NATIONAL ENERGY TECHNOLOGY LABORATORY

Sensitivity to Coal Price



NATIONAL

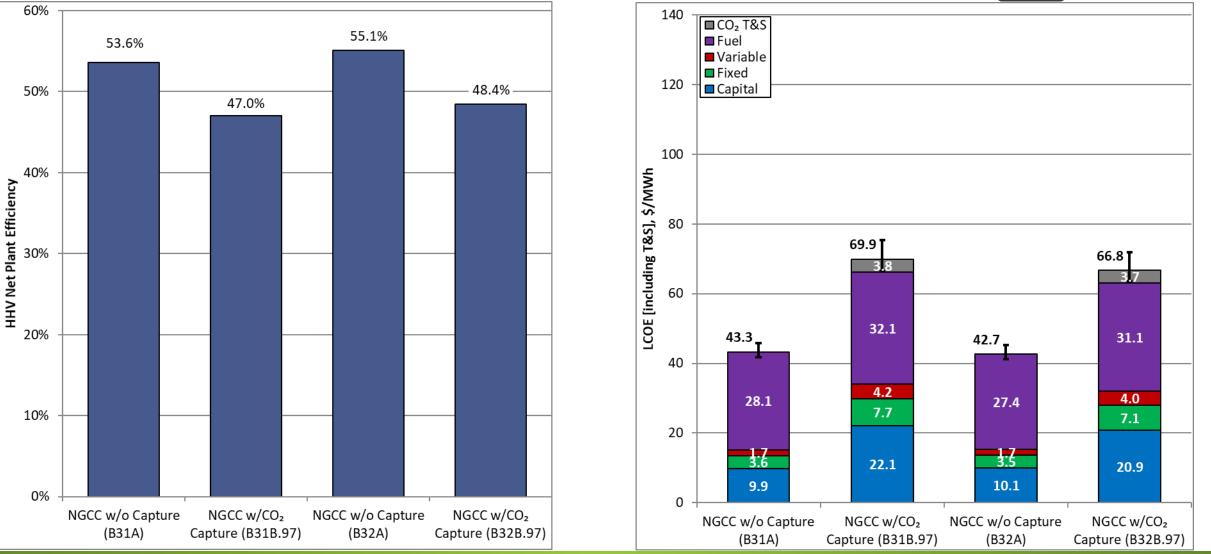
ENERGY TECHNOLOGY

Sensitivity to Natural Gas Price

NATIONAL ENERGY TECHNOLOGY LABORATORY

Distinction Between 95% Capture and Higher Rates

- Commercial-scale demonstration of solvent-based post-combustion CO₂ capture systems at power generation facilities (specifically PC plants) has shown the ability to capture 90% of the CO₂ in the flue gas stream
- Field-testing of post-combustion CO₂ capture technology, as well as vendor and industry feedback on projects currently in the planning stages, indicates that capture rates as high as 95% are feasible for both coal- and natural gas-fueled electricity generating units
- Technology suppliers and subject matter experts acknowledge and support that solventbased, post-combustion CO₂ capture technologies can achieve CO₂ removal rates beyond 95% on low-purity streams representative of fossil-fueled combustion
- Although technoeconomic analyses of deep decarbonization (≥ 99%) of combustion flue gas have been published by others, the relatively limited experience with design and operation of capture systems that can routinely, reliably, and economically achieve very high removal rates requires further study
- Technoeconomic analysis of the higher capture rates (97% NGCC and 99% PC) are included in the subject report


PC with 99% CO₂ Capture vs. No Capture

NATIONAL ERG TECHNOLOGY

NGCC with 97% CO₂ Capture vs. No Capture

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity – Revision 4A
 - Published October 2022: <u>https://www.osti.gov/biblio/1893822</u>
- Related/derivative studies:
 - Cost of Capturing CO₂ from Industrial Sources Revision 1 and associated carbon capture retrofit database (CCRD) – September 2022
 - Report available at https://www.osti.gov/biblio/1887586
 - CCRD Model available at https://www.osti.gov/biblio/1887588
 - User Guide available at https://www.osti.gov/biblio/1887587
 - Cost and Performance of Retrofitting NGCC Units for Carbon Capture and associated Carbon Capture Retrofit Database (CCRD) – February 2023
 - Eliminating the Derate of Carbon Capture Retrofits and associated CCRD 2023
 - Detailed cost sensitivity for NGCC with carbon capture and storage 2023
 - Technoeconomic and Life Cycle Analysis of Bio-Energy with Carbon Capture and Storage (BECCS) Baseline – 2023

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, expressor implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Questions?

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

CONTACT: Robert James; Marc Turner Robert.James@netl.doe.gov; Marc. Turner@netl.doe.gov

Supplemental Slides

Subcritical PC Plants

Performance Summary	B11A	B11B.90	B11B.95
Total Gross Power, MWe	688	769	774
CO₂ Capture/Removal Auxiliaries, kWe	-	18,800	20,200
CO2 Compression, kWe	-	48,660	52,170
Balance of Plant, kWe	37,520	50,620	51,470
Total Auxiliaries, MWe	38	118	124
Net Power, MWe	650	650	650
Higher Heating Value (HHV) Net Plant Efficiency, %	38.6	30.2	29.7
HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	9,336 (8,849)	11,940 (11,317)	12,128 (11,495)
Lower Heating Value (LHV) Net Plant Efficiency, %	40.0	31.3	30.8
LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	9,005 (8,535)	11,516 (10,915)	11,697 (11,087)
HHV Boiler Efficiency, %	88.0	88.0	88.0
LHV Boiler Efficiency, %	91.3	91.3	91.3
Steam Turbine Cycle Efficiency, %	46.3	55.1	55.8
Steam Turbine Heat Rate, kJ/kWh (Btu/kWh)	7,770 (7,365)	6,532 (6,191)	6,453 (6,116)
Condenser Duty, GJ/hr (MMBtu/hr)	2,793 (2,648)	2,312 (2,191)	2,277 (2,158)
Capture Rate (%)	-	90	95
Acid Gas Removal (AGR) Duty, GJ/hr (MMBtu/hr)	-	2,162 (2,050)	2,288 (2,169)
As-Received Coal Feed, kg/hr (lb/hr)	223,673 (493,115)	286,189 (630,940)	290,670 (640,819)
Limestone Sorbent Feed, kg/hr (lb/hr)	21,637 (47,701)	27,684 (61,033)	28,118 (61,989)
HHV Thermal Input, kWt	1,685,945	2,157,162	2,190,938
LHV Thermal Input, kWt	1,626,114	2,080,609	2,113,187
Raw Water Withdrawal, (m³/min)/MW _{net} (gpm/MW _{net})	0.038 (10.0)	0.058 (15.3)	0.059 (15.7)
Raw Water Consumption, (m³/min)/MW _{net} (gpm/MW _{net})	0.030 (8.0)	0.043 (11.4)	0.044 (11.7)
Excess Air, %	20.3	20.3	20.3

Power Summary	B11A	B11B.90	B11B.95	
Steam Turbine Power, MWe	688	769	774	
Total Gross Power, MWe	688	769	774	
Auxiliary Load Summary				
Activated Carbon Injection, kWe	30	40	40	
Ash Handling, kWe	730	940	950	
Baghouse, kWe	100	120	120	
Circulating Water Pumps, kWe	5,700	9,670	9,900	
CO₂ Capture/Removal Auxiliaries, kWe	-	18,800	20,200	
CO₂ Compression, kWe	-	48,660	52,170	
Coal Handling and Conveying, kWe	480	540	550	
Condensate Pumps, kWe	720	720	720	
Cooling Tower Fans, kWe	2,950	5,000	5,120	
Dry Sorbent Injection, kWe	60	80	80	
Flue Gas Desulfurizer, kWe	3,460	4,420	4,490	
Forced Draft Fans, kWe	1,150	1,470	1,490	
Ground Water Pumps, kWe	590	900	920	
Induced Draft Fans, kWe	10,600	13,570	13,780	
Miscellaneous Balance of Plant ^{A,B} , kWe	2,250	2,250	2,250	
Primary Air Fans, kWe	1,360	1,740	1,770	
Pulverizers, kWe	3,350	4,290	4,360	
Selective Catalytic Reduction, kWe	40	50	50	
Sorbent Handling & Reagent Preparation, kWe	1,040	1,330	1,350	
Spray Dryer Evaporator, kWe	250	320	320	
Steam Turbine Auxiliaries, kWe	500	500	500	
Transformer Losses, kWe	2,160	2,670	2,710	
Total Auxiliaries, MWe	38	118	124	
Net Power, MWe	650	650	650	

^A Boiler feed pumps are turbine driven

^B Includes plant control systems; lighting; heating, ventilation, and combined cycle (HVAC); and miscellaneous low voltage loads

Supercritical PC Plants

	NATIONAL ENERGY TECHNOLOGY LABORATORY
--	--

Performance Summary	B12A	B12B.90	B12B.95
Total Gross Power, MWe	686	763	768
CO₂ Capture/Removal Auxiliaries, kWe	-	17,900	19,200
CO₂ Compression, kWe	-	46,330	49,640
Balance of Plant, kWe	35,950	48,270	49,030
Total Auxiliaries, MWe	36	113	118
Net Power, MWe	650	650	650
Higher Heating Value (HHV) Net Plant Efficiency, %	40.2	31.7	31.2
HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	8,957 (8,490)	11,371 (10,778)	11,540 (10,938)
Lower Heating Value (LHV) Net Plant Efficiency, %	41.7	32.8	32.3
LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	8,639 (8,188)	10,968 (10,396)	11,131 (10,550)
HHV Boiler Efficiency, %	88.0	88.0	88.0
LHV Boiler Efficiency, %	91.3	91.3	91.3
Steam Turbine Cycle Efficiency, %	48.2	57.4	58.2
Steam Turbine Heat Rate, kJ/kWh (Btu/kWh)	7,471 (7,081)	6,267 (5,940)	6,189 (5,866)
Condenser Duty, GJ/hr (MMBtu/hr)	2,592 (2,457)	2,100 (1,990)	2,064 (1,956)
Capture Rate (%)	-	90	95
AGR Duty, GJ/hr (MMBtu/hr)	-	2,059 (1,952)	2,177 (2,064)
As-Received Coal Feed, kg/hr (lb/hr)	214,574 (473,055)	272,519 (600,801)	276,574 (609,741)
Limestone Sorbent Feed, kg/hr (lb/hr)	20,757 (45,761)	26,362 (58,118)	26,754 (58,983)
HHV Thermal Input, kWt	1,617,359	2,054,118	2,084,684
LHV Thermal Input, kWt	1,559,963	1,981,222	2,010,703
Raw Water Withdrawal, (m³/min)/MW _{net} (gpm/MW _{net})	0.035 (9.3)	0.054 (14.3)	0.055 (14.6)
Raw Water Consumption, (m³/min)/MW _{net} (gpm/MW _{net})	0.028 (7.4)	0.040 (10.6)	0.041 (10.9)
Excess Air, %	20.3	20.3	20.3

Power Summary	B12A	B12B.90	B12B.95
Steam Turbine Power, Mwe	686	763	768
Total Gross Power, Mwe	686	763	768
Auxiliary Load Summ	ary		
Activated Carbon Injection, kWe	30	40	40
Ash Handling, kWe	700	890	910
Baghouse, kWe	90	120	120
Circulating Water Pumps, kWe	5,300	9,020	9,230
CO₂ Capture/Removal Auxiliaries, kWe	-	17,900	19,200
CO2 Compression, kWe	-	46,330	49,640
Coal Handling and Conveying, kWe	470	530	530
Condensate Pumps, kWe	660	790	800
Cooling Tower Fans, kWe	2,740	4,670	4,770
Dry Sorbent Injection, kWe	60	80	80
Flue Gas Desulfurizer, kWe	3,320	4,210	4,270
Forced Draft Fans, kWe	1,100	1,400	1,420
Ground Water Pumps, kWe	500	840	860
Induced Draft Fans, kWe	10,230	12,920	13,110
Miscellaneous Balance of Plant ^{A,B} , kWe	2,250	2,250	2,250
Primary Air Fans, kWe	1,310	1,660	1,680
Pulverizers, kWe	3,220	4,090	4,150
Selective Catalytic Reduction, kWe	30	50	50
Sorbent Handling & Reagent Preparation, kWe	1,000	1,270	1,290
Spray Dryer Evaporator, kWe	240	300	300
Steam Turbine Auxiliaries, kWe	500	500	500
Transformer Losses, kWe	2,150	2,640	2,670
Total Auxiliaries, MWe	36	113	118
Net Power, MWe	650	650	650

^A Boiler feed pumps are turbine driven

^B Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

- NE NATIONAL ENERGY TECHNOLOGY LABORATORY
--

Performance Summary	B31A	B31B.90	B31B.95
Combustion Turbine Power, MWe	477	477	477
Steam Turbine Power, MWe	263	215	212
Total Gross Power, MWe	740	692	690
CO2 Capture/Removal Auxiliaries, kWe	-	13,600	14,400
CO2 Compression, kWe	-	17,900	18,900
Balance of Plant, kWe	13,562	15,992	16,042
Total Auxiliaries, MWe	14	47	49
Net Power, MWe	727	645	640
HHV Net Plant Efficiency, %	53.6	47.6	47.3
HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	6,714 (6,363)	7,563 (7,169)	7,617 (7,220)
HHV Combustion Turbine Efficiency, %	35.2	35.2	35.2
LHV Net Plant Efficiency, %	59.4	52.7	52.4
LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	6,060 (5,743)	6,827 (6,470)	6,875 (6,516)
LHV Combustion Turbine Efficiency, %	39.0	39.0	39.0
Steam Turbine Cycle Efficiency, %	39.7	46.9	47.5
Steam Turbine Heat Rate, kJ/kWh (Btu/kWh)	9,074 (8,601)	7,678 (7,277)	7,586 (7,190)
CO ₂ Capture Rate, %	0	90	95
Condenser Duty, GJ/hr (MMBtu/hr)	1,406 (1,332)	860 (815)	830 (787)
AGR Cooling Duty, GJ/hr (MMBtu/hr)	_	1,194 (1,132)	1,232 (1,167)
Natural Gas Feed Flow, kg/hr (lb/hr)	93,272 (205,630)	93,272 (205,630)	93,272 (205,630)
HHV Thermal Input, kWt	1,354,905	1,354,905	1,354,905
LHV Thermal Input, kWt	1,222,936	1,222,936	1,222,936
Raw Water Withdrawal, (m³/min)/MW _{net} (gpm/MW _{net})	0.015 (4.0)	0.026 (6.9)	0.027 (7.0)
Raw Water Consumption, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.012 (3.1)	0.017 (4.6)	0.018 (4.7)

Power Summary	B31A	B31B.90	B31B.95
Combustion Turbine Power, MWe	477	477	477
Steam Turbine Power, MWe	263	215	212
Total Gross Power, MWe	740	692	690
Auxiliary Load Su	mmary		
Circulating Water Pumps, kWe	2,820	4,340	4,360
Combustion Turbine Auxiliaries, kWe	1,020	1,020	1,020
Condensate Pumps, kWe	150	170	170
Cooling Tower Fans, kWe	1,460	2,240	2,260
CO₂ Capture/Removal Auxiliaries, kWe	-	13,600	14,400
CO₂ Compression, kWe	-	17,900	18,900
Feedwater Pumps, kWe	4,830	4,830	4,830
Ground Water Pumps, kWe	260	400	410
Miscellaneous Balance of Plant ^A , kWe	570	570	570
SCR, kWe	2	2	2
Steam Turbine Auxiliaries, kWe	200	200	200
Transformer Losses, kWe	2,250	2,220	2,220
Total Auxiliaries, MWe	14	47	49
Net Power, MWe	727	645	640

 $^{\rm A}$ Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

- NET NATIONAL ENERGY TECHNOLOGY LABORATORY

Performance Summary	B32A	B32B.90	B32B.95
Combustion Turbine Power, MWe	686	686	686
Steam Turbine Power, MWe	324	260	256
Total Gross Power, MWe	1,009	945	942
CO₂ Capture/Removal Auxiliaries, kWe	-	18,000	19,200
CO₂ Compression, kWe	-	23,810	25,130
Balance of Plant, kWe	16,923	20,153	20,213
Total Auxiliaries, MWe	17	62	65
Net Power, MWe	992	883	877
HHV Net Plant Efficiency, %	55.1	49.0	48.7
HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	6,537 (6,196)	7,342 (6,959)	7,393 (7,007)
HHV Combustion Turbine Efficiency, %	38.0	38.0	38.0
LHV Net Plant Efficiency, %	61.0	54.3	54.0
LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh)	5,900 (5,592)	6,627 (6,281)	6,672 (6,324)
LHV Combustion Turbine Efficiency, %	42.2	42.2	42.2
Steam Turbine Cycle Efficiency, %	39.1	46.7	47.3
Steam Turbine Heat Rate, kJ/kWh (Btu/kWh)	9,213 (8,732)	7,713 (7,311)	7,609 (7,212)
CO ₂ Capture Rate, %	0	90	95
Condenser Duty, GJ/hr (MMBtu/hr)	1,757 (1,666)	1,031 (978)	992 (940)
AGR Cooling Duty, GJ/hr (MMBtu/hr)	-	1,587 (1,505)	1,638 (1,552)
Natural Gas Feed Flow, kg/hr (lb/hr)	124,025 (273,429)	124,025 (273,429)	124,025 (273,429)
HHV Thermal Input, kWt	1,801,631	1,801,631	1,801,631
LHV Thermal Input, kWt	1,626,150	1,626,150	1,626,150
Raw Water Withdrawal, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.014 (3.6)	0.024 (6.4)	0.025 (6.5)
Raw Water Consumption, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.011 (2.8)	0.016 (4.2)	0.016 (4.3)

Power Summary	B32A	B32B.90	B32B.95
Combustion Turbine Power, MWe	686	686	686
Steam Turbine Power, MWe	324	260	256
Total Gross Power, MWe	1,009	945	942
Auxiliary Load Su	mmary		
Circulating Water Pumps, kWe	3,510	5,530	5,570
Combustion Turbine Auxiliaries, kWe	1,320	1,320	1,320
Condensate Pumps, kWe	180	200	200
Cooling Tower Fans, kWe	1,810	2,860	2,880
CO₂ Capture/Removal Auxiliaries, kWe	-	18,000	19,200
CO₂ Compression, kWe	-	23,810	25,130
Feedwater Pumps, kWe	5,760	5,760	5,760
Ground Water Pumps, kWe	330	520	520
Miscellaneous Balance of Plant ^A , kWe	710	710	710
SCR, kWe	3	3	3
Steam Turbine Auxiliaries, kWe	230	230	230
Transformer Losses, kWe	3,070	3,020	3,020
Total Auxiliaries, MWe	17	62	65
Net Power, MWe	992	883	877

 $^{\rm A}$ Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

