

Physical Metallurgy and Materials Design Laboratory

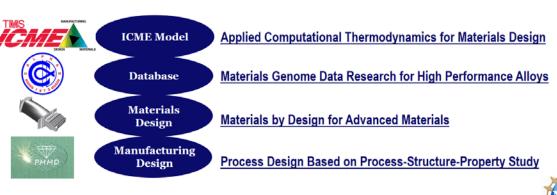
Wei Xiong

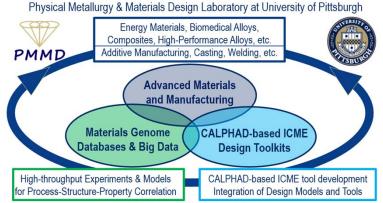
Assistant Professor University of Pittsburgh

weixiong@pitt.edu www.pitt.edu/~weixiong 2016-present, University of Pittsburgh, Assistant Professor

2013-2016, Northwestern University; Postdoc

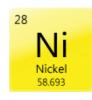
2012-2013, University of Wisconsin – Madison; Postdoc

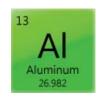

2008-2012, KTH Royal Institute of Technology, Sweden; Ph.D.


2005/12-2006/3, University of Vienna, Austria; visiting scholar

Physical Metallurgy and Materials Design Laboratory

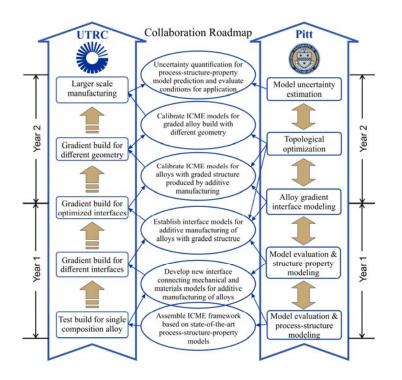
- Advanced Materials and Manufacturing
- Fundamental Research in Physical Metallurgy
- Bridge Improved Fundamentals and Engineering Applications

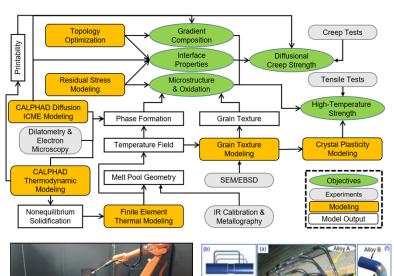


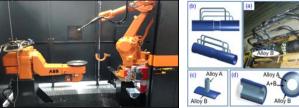


PMMD

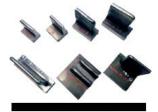
Additive manufacturing of graded alloys




"Integrated Computational Materials and Mechanical Modeling for Additive Manufacturing of Alloys with Graded Structure Used in Fossil Fuel Power Plants"


PI: Wei Xiong, Co-PI: Albert To (Pitt), Michael A Klecka (UTRC)

Sponsor: DOE NETL, Period of Performance: 11/1/2018-10/31/2020

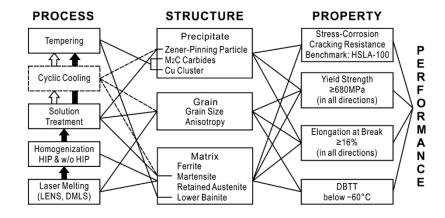


WAAM Building Process

Joint Built T91 with 740H

12 inch

New alloy design for additive manufacturing


"Integrated Computational Materials Design for Additive Manufacturing of High-Strength Steels used in Naval Environments",

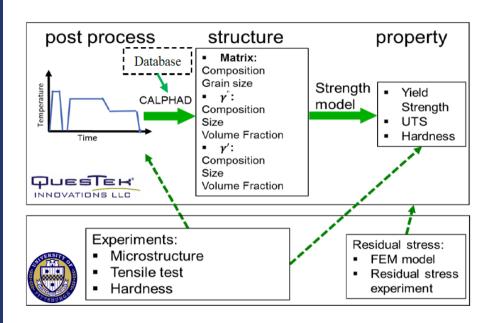
Sponsor: ONR, Period of Performance: 7/1/2017-6/30/2020

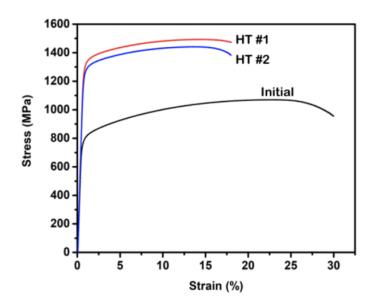
Current progress:

- Established a high-throughput composition screening method
- 2. Three prototype steels have been developed
- 3. HSLA Powder manufactured and testing build is moving forward

- ✓ Establish an ICME method to design HSLA steels
- ✓ Based on the existing HSLA100 steel
- Targeting comparable properties with the wrought steel

Post-heat treatment design for additive manufacturing

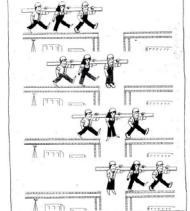



"Integrated Experimental and Analytical Technologies for Process Optimization and Qualification in Additive Manufacturing"

PI: Jiadong Gong (QuesTek); Co-PI: Wei Xiong & Albert To (Pitt)

Sponsor: NASA (STTR Phase II), Period of Performance: 11/1/2018-10/30/2020

- Develop the ICME framework for Inconel additive manufacturing processing optimization
- Generate a better standard for Inconel 718 manufacturing steps based on powder bed


PMMD

Seed ideas for today's discussion

- Advanced materials design
 - New generation steels and superalloys
 - Complex concentrated alloys (e.g. HEA high entropy alloys)
- Advanced manufacturing
 - New stack materials design (e.g. additive manufacturing)
 - Composition optimization of the current alloys for advanced manufacturing
 - New composition design (for mechanical performance including corrosion)
 - In-situ monitoring to provide accurate feedback in manufacturing
 - Post heat treatment design (post-weld heat treatment)
- Simulation and modeling
 - Materials Genome (CALPHAD)
 - ICME (Integrated Computational Materials Engineering) approach
 - How to integrate Materials, Mechanical and Manufacturing?
 - Uncertainty quantification and scale-up for commercialization (AI techniques)
- Databases and standards
 - Both simulation and experiments

Opportunities:

New materials or fabrication methods for expensive and/or high failure rate components can reduce maintenance costs by reducing replacement frequency or fabrication costs.

Wei Xiong, Gregory B. Olson, "Cybermaterials: Materials by Design and Accelerated Insertion of Materials", npj Computational Materials, nature publishing group, 2 (2016) 15009. https://doi.org/10.1038/npjcompumats.2015.9 Wei Xiong, Gregory B. Olson, "Integrated Computational Materials Design for High-Performance Alloys ", MRS Bulletin, 40 (2015) 1035-1043. https://doi.org/10.1557/mrs.2015.273