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What Does Scrubbing CO, from a Point Source Look Like?
First patent filed by Bottoms in 1930!
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Direct Air Capture Contactor Looks Very Different
need 10 of these to capture 1 MtCO, per year




Today’s technologies are based on liquids or solid materials
containing CO,-grabbing chemicals

Solvents rely on structured packing with solvent
flow over the packing

Solid sorbents rely on a honey-comb structure
with chemicals (amines) bound to structure




System Differences — Liquid Solvents
Carbon Engineering
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System Differences — Solid Sorbents
Global Thermostat and Climeworks
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Reference: Pacala et al., NASEM, 2019



To Design a DAC Plant, you First Need to Designh a Power Plant

* No matter which approach you choose, the heat required to recycle the
material is dominant over the electricity required to drive the fans,

* To capture 1 MtCO,/yr from air requires 300-500 MW of power!

* Choosing which energy resource to fuel the DAC plant will dictate the
net CO, removed



Cost Differences
CAPEX
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Reference: Pacala et al., NASEM, 2019
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Cost Differences
OPEX
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DAC Siting Low-Carbon Available Thermal Energy

Results of a Recent Study from Our Team

» Regardless of the technology (solvent or sorbent), the energy distribution is 80% thermal and 20% electric for
DAC

» Solid sorbent selected due to low-quality of thermal energy required (i.e., 100 °C)

* Thermal we’re considering from 3 pathways:
e Geothermal — “waste” heat
* Nuclear — 5% slipstream of steam
e Stranded natural gas - avoided flare gas

* Beneficial Reuse: EOR and beverage bottling industry

* Geologic Storage: USGS basin-level storage

 Ultimate Goal: delivered cost of compressed CO, at 99% purity in light of 45Q
» Electricity prices and carbon intensity based upon grid mix of a given DAC site

* Careful of Definitions:
e Cost of Capture — “break-even cost”
* Cost of CO, Avoided — considering fossil-based energy to fuel DAC
* Cost of CO, Produced — combining point-source capture with DAC
* Cost of Net Removed CO, — true cost from climate’s perspective

Reference: Wilcox et al., under review PNAS (2019)



Geological Sequestration — satisfying the 45Q criteria, i.e., > 100 ktCO,/yr
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Co-located w/ geothermal and stranded NG
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Reference: Wilcox et al., under review PNAS (2019)



Costs of Geologic Storage

End Use  Process - Cost Type

Avoided Flare - Produced
Avoided Flare - Net Removed

Avoided Flare - Captured
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Questions?

More Information:

https://users.wpi.edu/~jlwilcox/

https://www.ted.com/talks/jennifer wilcox a new way to remove co2 from the atmosphere

https://www.npr.org/2019/06/07/730392105/jennifer-wilcox-how-can-we-remove-co2-from-the-
atmosphere-will-we-do-it-in-time

http://nas-sites.org/dels/studies/cdr/



https://users.wpi.edu/~jlwilcox/
https://www.ted.com/talks/jennifer_wilcox_a_new_way_to_remove_co2_from_the_atmosphere
https://www.npr.org/2019/06/07/730392105/jennifer-wilcox-how-can-we-remove-co2-from-the-atmosphere-will-we-do-it-in-time
http://nas-sites.org/dels/studies/cdr/

What Would it Take for CO,-EOR to be Negative?
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operational choices,
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Advanced EOR: 0.94 tCO, produced/tCO2 sequestered
Max Storage EQR: 0.66 tCO, produced/tC02 sequestered

Reference: 2015, IEA Report, Storing CO, through Enhanced Oil Recovery



* Excess CO, from the
separation facility is
injected into an
underlying saline aquifer

* Note that all approaches
are negative in the early
years of the project.

a) Continuous gas injection
b) Water curtain injection
c) Water alternating gas

d) Hybrid WAG + WCI
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Reference: Nunez-Lopez, Frontiers Climate, Negative Emissions Technologies, 2019; Study associated w/ Cranfield field, a 3,000m deep reservoir in Mississippi



IEA’s Maximum Storage EOR+
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Today DAC is Taking Place at the Kiloton Scale
How Might we Get to a Gigaton by Mid Century?

Cumulative CO,Removal - DAC [ki]
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Reference: Wilcox et al., under review PNAS (2019)

100000

Capture Cost - DAC [$/tCO,]

Technology Experience Rate
(%)

PV 25

Wind 18

Gas Turbine RD&D 23

Gas Turbine -commercial 12
DAC — learning by doing

RD&D 23

commercial 9

DAC — wind model 17

DAC — solar model 25

* PV Model - $100 by 2040 — 40 MT — 1 Gt by 2050
* Wind Model - $100 by 2050 — 20 MT - 1 Gt 2070
* Conventional - $100 by 2060 — 100 MT - 1 Gt 2070



Comparison to Point Source Capture (amine scrubbing)

SCPC Power Plant NGCC Power Plant

O OPEX
B CAPEX

O OPEX
B CAPEX

Reference: Integrated Environmental Control Module, developed by Ed Rubin



