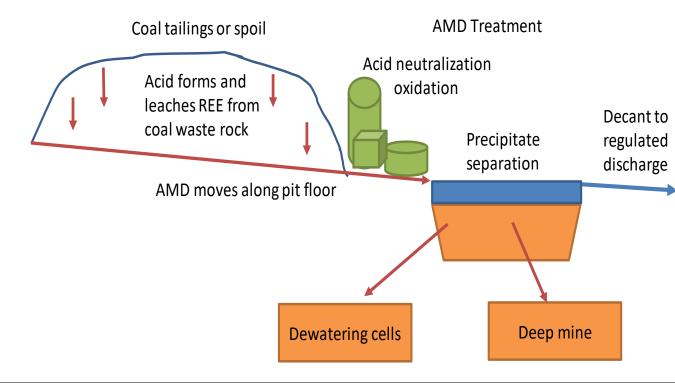


Development and Testing of an Integrated Acid Mine Drainage Treatment and Rare Earth/Critical Mineral Plant

> USEA webinar 25 Aug 2020

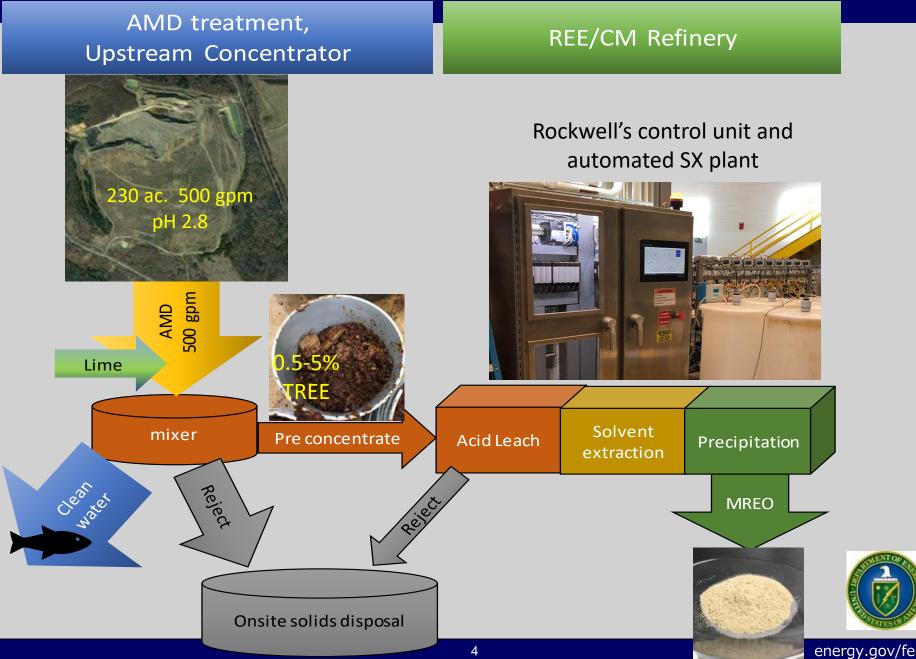
- Paul Ziemkiewicz, PhD, WVU
- Jim Constant, PE, WVU
- Aaron Noble, PhD, Virginia Tech
- John Quaranta, PhD, WVU
- Lian Shin Lin, PhD, WVU
- Harry Finklea, PhD, WVU
- West Virginia Dept. of Environmental Protection
- TenCate Corp.
- Rockwell Automation, Inc.
- Shonk Investments LLC

Develop and test a pilot-scale, continuous process for treating Acid Mine Drainage (AMD) while producing an enriched Rare Earth, Critical Mineral product.

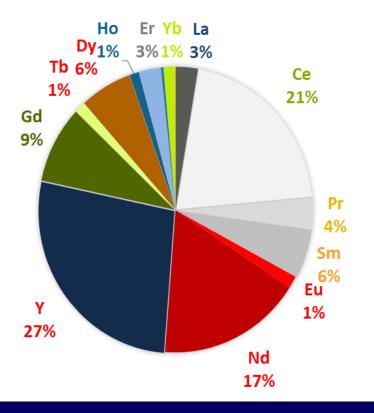

Goals:

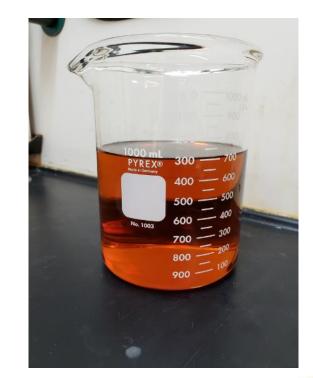
- Design, construct and operate a full-scale upstream concentrator and ALSX unit at an active AMD discharge treatment site.
- Pre-Concentrate grade: exceeding 0.5% REE/CM
- Final MREO grade exceeding 90% grade with > 50% HREE+CM/TREE
- Demonstrate production capacity of > 500 kg/yr
- commercially attractive efficiencies and processing costs.
- Not only environmentally benign but a net environmental benefit.

ACID MINE DRAINAGE IS ANALOGOUS TO AN ACID HEAP LEACH



energy.gov/fe


PROJECT ETD67: PILOT PLANT-WVDEP BUFFALO A34 PERMIT


PROJECT DISCUSSION: RECENT RESULTS

Recent AL/SX results AMD sludge: Simple circuit, optimized for HREE

Sample # 2880	Grade
TREE	100.0%
LREE	51.2%
HREE	48.8%
HREE+CM	67.2%

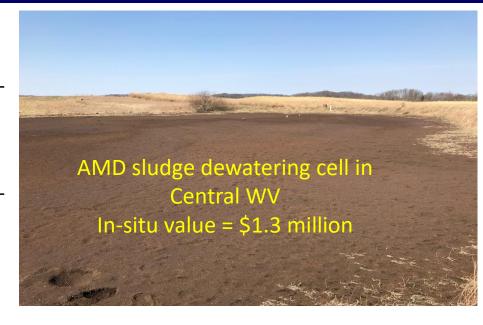
Improved Acid Leach Procedure: PLS = 200-320 mg TREE/L

energy.gov/fe

Nd 17%

Pr 4%

<u>Dy 6%</u>


Ce 21%

27%

PROJECT DISCUSSION: RESOURCE BASE-TWO APPROACHES

AMD Sludge Recovery>300 g/t (ppm)

AMD sludge cells sampled	76
REE Basket price	\$ 237 \$/kg
Sludge mass DWB	1,062,413 t
Average TREE grade	663 g/t
TREE mass	350 t
Estimated contained value	\$ 79,633,629

Direct AMD Recovery

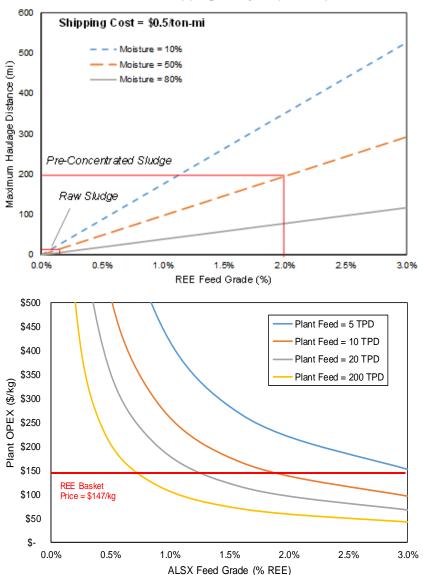
REE production from AMD:	Northern	+ Central Al	р
AMD production		1,503,371	gpm
Average TREE conc.		0.269	mg/L
TREE production		807	t/yr
Estimated contained value	\$1	91,362,343	STEMP

ECONOMIC AND ENVIRONMENTAL IMPACTS

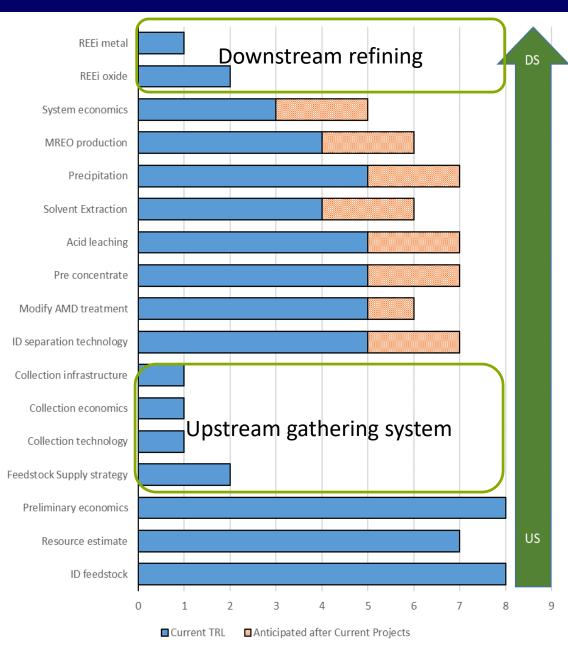
Anticipated 'profit' from A34 plant

	•		
Basket price	\$ 237 /kg MREO		
Total processing cost	\$		
Estimated profit	\$ 183 /kg MREO		
AMD feed	500 gpm		
AMD quality	0.8 mg TREE/L		
Production	880 kg MREO/yr		
	669 kg Cobalt/yr		
Production	1,549 kg/yr		
Estimated annual profit*	<mark>\$184,448</mark>		
Does not include:	capital cost recovery		
	taxes		

elemental losses oxide separation costs



ECONOMIC FEASIBILITY ANALYSIS


Breakeven Shipping Analysis (5% CV)

Economic Parameter	Value
Plant Feed Rate/Grade	175 TPD @ 2% REE
Product Rate/Grade	2 TPD @ 90% MREO
Operating Period	20 years; 10% discount rate
REE Basket Price	\$147 /kg
REE Recovery	59%
Plant CAPEX	\$20 Million
Plant OPEX	\$54 / kg
NPV	\$80 Million
IRR	61%
Payback period	1.5 operating years

SCALING UP TECHNOLOGIES

Hypothetical Hub and Spoke Arrangement for collecting AMD concentrates for regional processing facilities

energy.gov/fe

- 1. Leveraging: Our feedstock is a byproduct of AMD treatment-most capital costs are included in the AMD treatment plant
- 2. Environmentally Benign:
 - 1. Supports stream and river remediation efforts
 - 2. No Radioactivity in the tailings
- 3. High value product: 67% Heavy + Critical to Total REE
- 4. No to minor permitting issues
- 5. Short time to reach production: months
 - Minimum exploration costs
 - No mining cost
 - Pre development cost

