

Extraction of rare earth elements from acid mine drainage precipitates

Paul Ziemkiewicz

WV Water Research Inst., West Virginia University Xingbo Liu

Mechanical Engineering, West Virginia University **Aaron Noble**

Mining & Minerals Engineering, Virginia Tech

U.S. Energy Association 31 May 2018 Washington DC

Presentation Outline

Classification

Rare Earth Elements

		Light				Critical											
Н		_	He	avy		*Uns	table										He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															_
			Ce	Pr	Nd	Pm*	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Ра	U	Np	Pt	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Our REE Projects

DE-FE0026927

Phase 1 ETD30 Completed

- Development of a cost-effective & environmentally benign process to treat and recover REEs from AMD
- Perform a preliminary process system
 Design and Techno-Economic Analysis

• Phase 2 ETD50

- Build and operate a bench-scale pilot plant
- Update cost and performance metrics
- Supply chain/commercialization plan
- Target product grade = 2% REE

DE-FE0026444 ETD39 Completed

- Conduct a broad sampling campaign (> 150 sites).
- Perform a detailed assessment at promising sites
- Report REE concentrations and elemental distributions

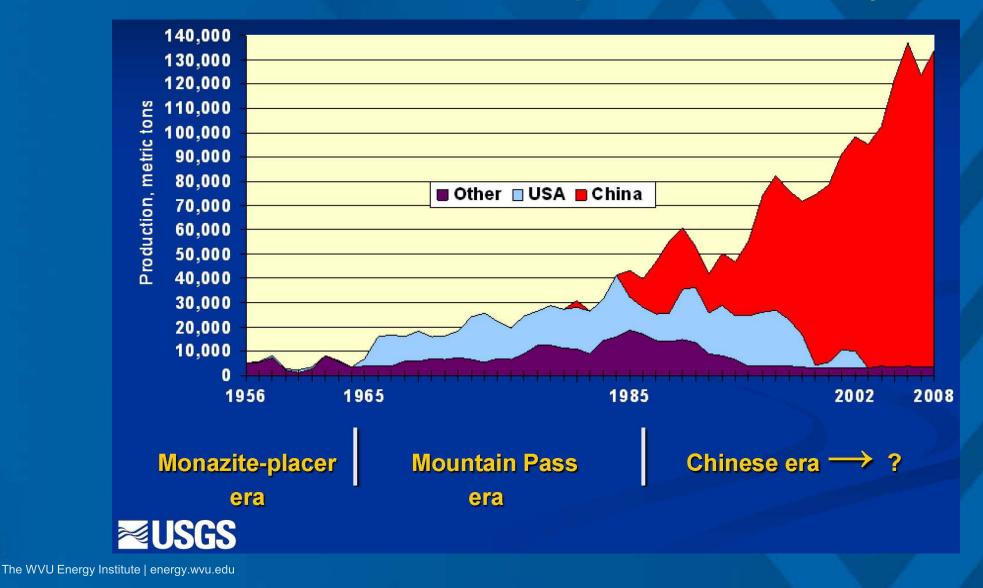
DE-FE0031524 ETD53

- Develop a novel process for capturing REEs upstream of AMD treatment
- Synthesize with a downstream process to produce high-grade REE products, >90% REO

Definitions:

- Basket Price
 - Weighted value
 - market price of each REE oxide x concentration/total REE concentration
 - Assumed market price of a kilogram of mixed rare earth oxide
- Contained Value
 - Basket price x mass of dry sludge = \$/ton of dry sludge

MOLYCORP REE MINE, MOUNTAIN PASS CA



- The U.S. imports nearly all of its REEs
- Mostly from China
- One operating US mine (maybe)
- USDOE seeks additional domestic sources from fossil energy sources
- Minimal environmental footprint
- Move quickly to market

Our strategic disadvantage: China controls exports ~ 35kt/yr

Projected TREE demand through 2025 (tons/year)

	Global dema	USA de	mand	
	@ 7% ann. Gro	owth	total*	defense**
2017	158,403		15,840	792
2018	169,845		16,984	849
2019	182,176		18,218	911
2020	195,469		19,547	977
2021	209,804	??	20,980	1,049
2022	225,265		22,527	1,126
2023	241,947		24,195	1,210
2024	259,951		25,995	1,300
2025	279,387		27,939	1,397
			* 10% global	
		** 5% USA de	mand	

This assumes that USA manufacturing demand does not increase beyond current rates

RARE EARTH ELEMENTS IN AMD SLUDGE

Global demand/supply

	2015 demand	2015 supply	
REE as oxide	tons/year	tons/year	
total REE	180,000	208,500	
cerium	65,500	82,500	
neodymium	37,500	32,500	
europium	750	600	
terbium	475	400	
dysprosium	2,750	1,800	

The WVU Energy Institute | energy.wvu.edu

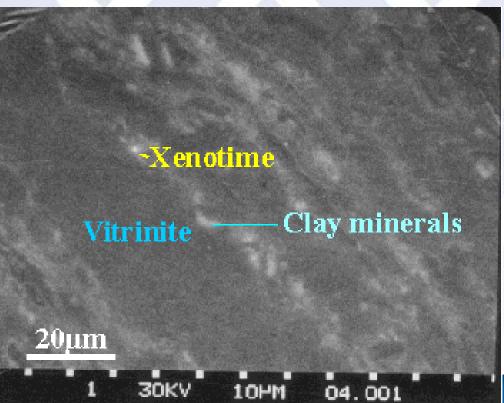
Many deposits have high concentrations but low recoverability: The granite counter top argument

Current and Proposed REE Developments

Conc.	mg/kg	basis	location
0.0300%	300	total REE	south China
0.0160%	160	Dysprosium	Kipwa, Canada
0.5800%	5,800	total REE (low)	Dotson Dike, Alaska
1.0540%	10,540	total REE (high)	Dotson Dike, Alaska

USDOE/NETL Project objectives

- Feedstock TREE > 300 mg/kg
 - Characterize and quantify
- Concentrate TREE > 2%
 - Small scale demonstration
- Prove significant supply to the domestic market


Conventional REE Ores

- Bastnasite (carbonate) or monzonite (phosphate)
 - both generally in igneous complexes
- Extraction requires severe comminution, acid dissolution to liberate REE from AI-Si matrix
- Refining via solvent extraction/electro-winning
- Contains uranium and thorium....So the tailings are acidic and radioactive
- Chinese deposits include iron ore and laterites

Mineral associations in WV coals from WVGES

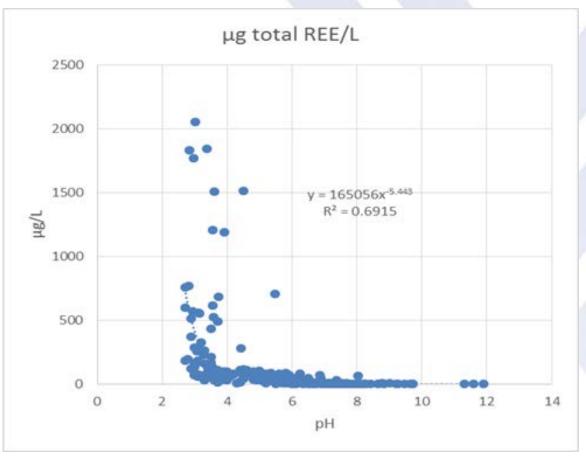
- Monazite (less commonly xenotime): REE (PO₄ SiO₄) weathered from granite as micron-sized particles
- Does not dissolve in weak acid, requires concentrated acid to liberate REEs
- When burned in a PC boiler nearly all of the inert minerals fuse into alumino-silicate glass
- Which is even more Resistant to acid attack

Acid Mine Drainage Chemistry
1. H₂SO₄ leaches REEs from shale
2. REE's precipitate with Fe(OH)₃

Pyrite + O_2 + H_2O = Fe^{2+} + H_2SO_4 $Fe^{2+} + O_2 + OH^{-}$ $= Fe(OH)_3$

Typical, large AMD treatment plant

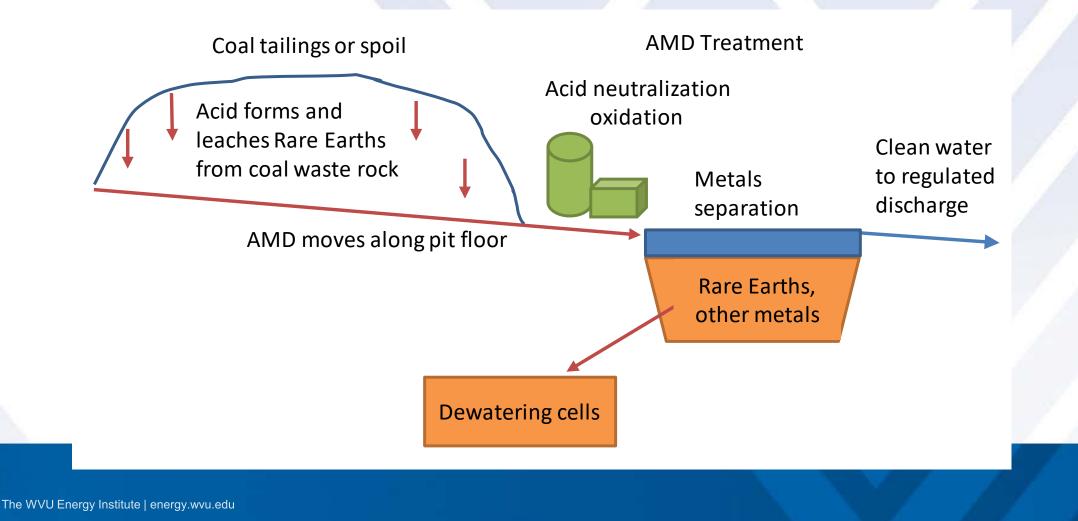
Lime tower left, clarifier center

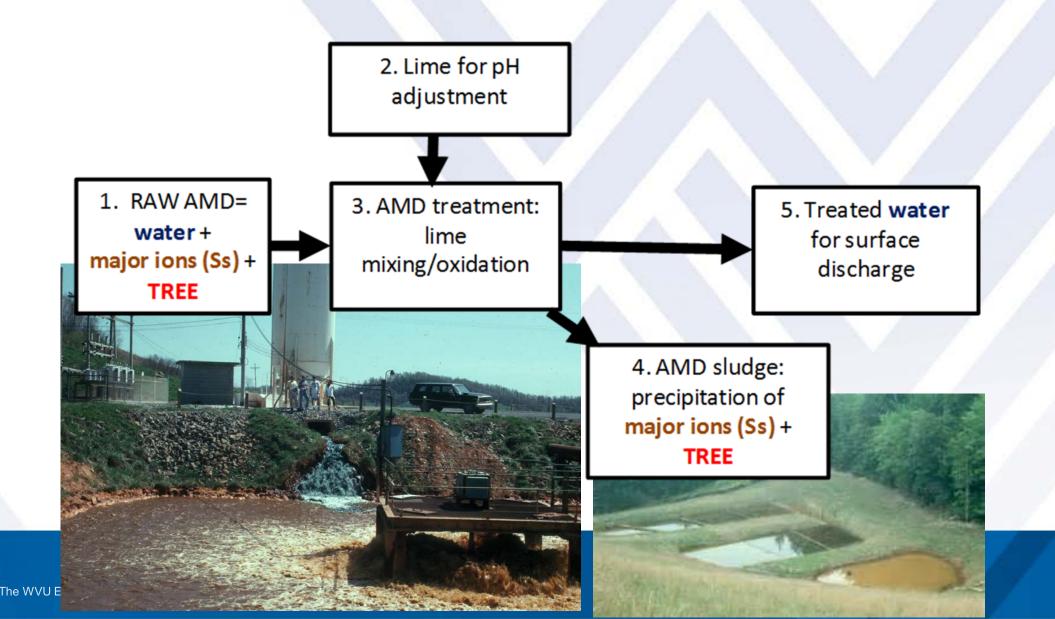

Mixers, aerators

REE concentration in AMD is a function of raw water pH

Solubility perfectly mirrors Fe³⁺

AMD Sludge: $Fe(OH)_3$ and anything else that precipitates as a hydroxide

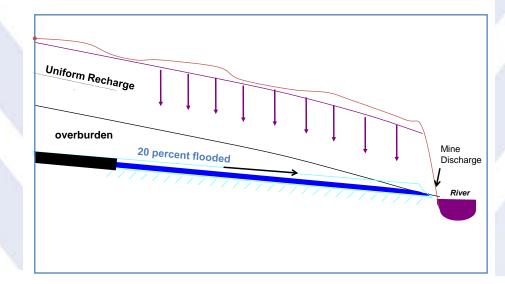




Solids=50%

Acid Mine Drainage (AMD) Treatment Typical layout

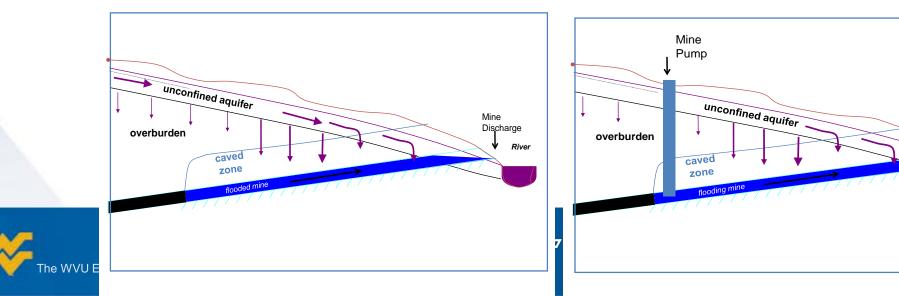
Conventional AMD Treatment


In deep mines the extraction point will control REE concentration

High pH, low REE

Flooded High Dilution

Low pH/high REE



Flooded Mine Low Dilution

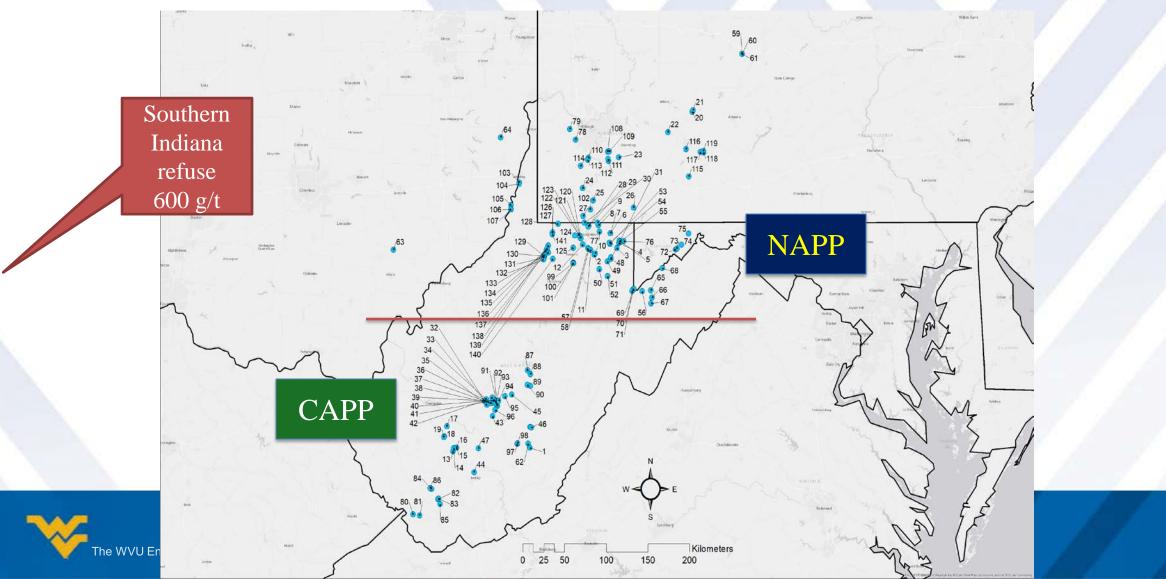
No Discharge

River

Resource characterization, Valuation

Metal value: \$555/kg each REE Processed to pure metal

Oxide value:


Basket price: \$237.23/kg TREE weighted value Contained value: \$129.16/t dry sludge accounts for handling and processing

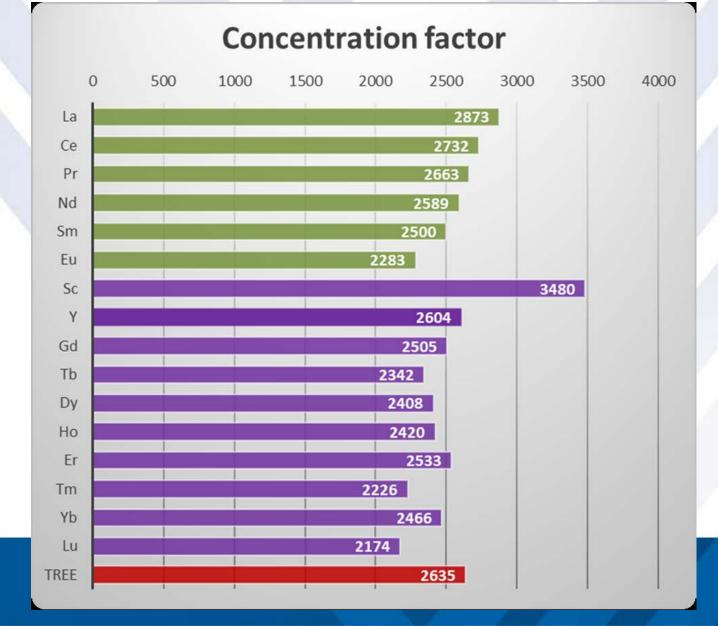
140 Sampled locations: MD, OH, PA, WV

Central vs. Northern Appalachian coal basins

Little difference between REE distribution or total concentration (g/t)

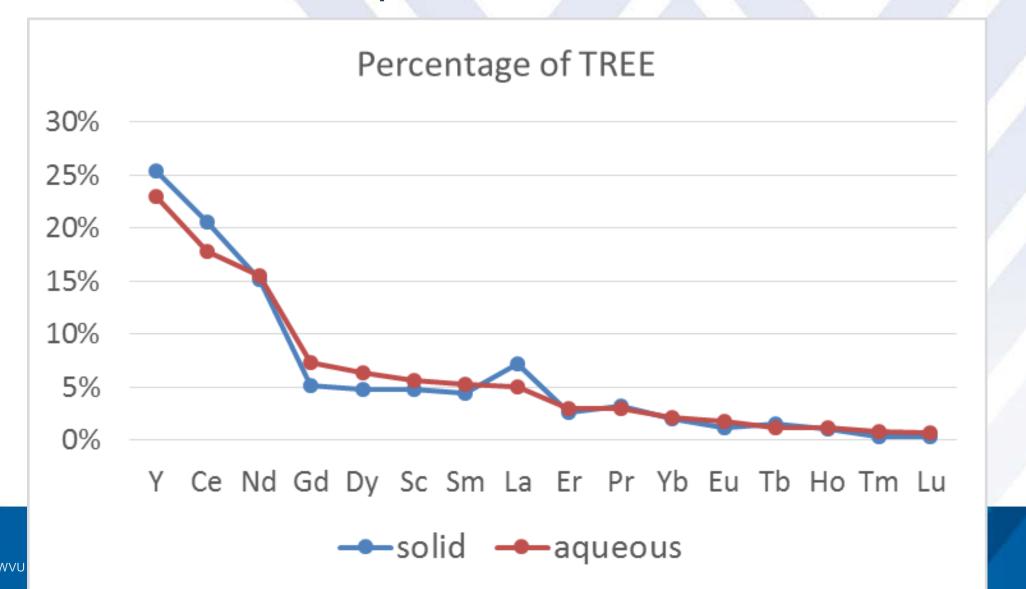
A sample from the Illinois Basin was similar to typical, low pH Appalachian AMD

> Sites sampled: CAPP 42 NAPP 110

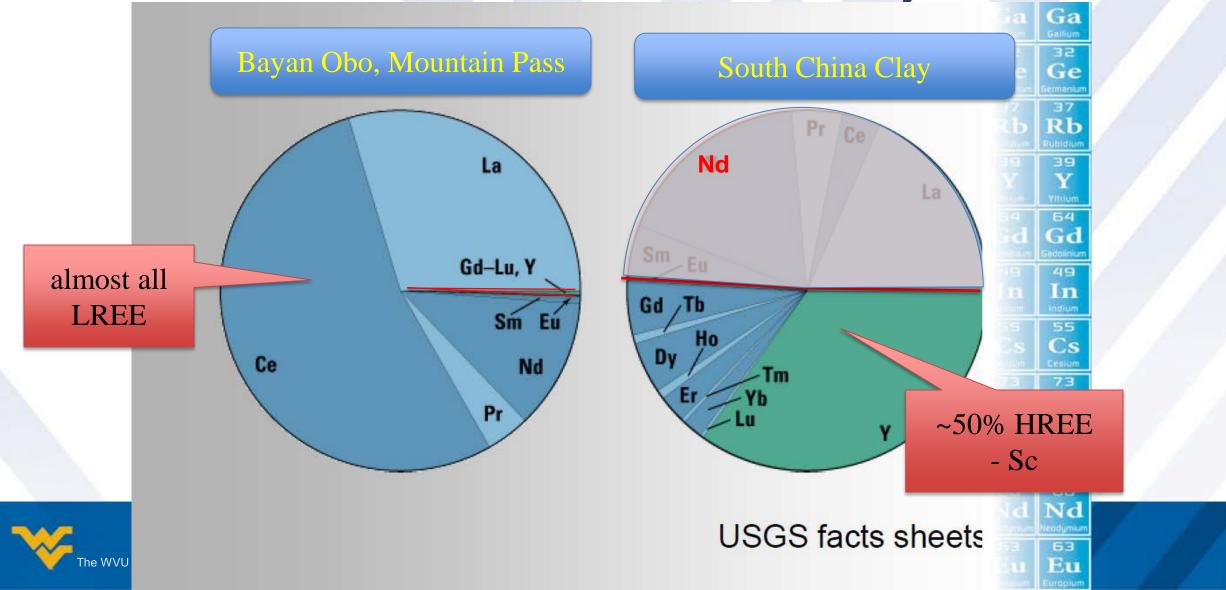

	CAPP	NAPP	All	
La	41.4	38.4	39.9	
Ce	97.1	95.0	96.0	
Pr	14.4	14.0	14.2	LREE
Nd	66.5	64.5	65.5	
Sm	18.2	17.6	17.9	
Eu	4.4	4.5	4.4	Critical
Sc	12.8	14.9	13.8	1 1 1
Υ	88.6	108.7	98.7	
Gd	23.9	24.3	24.1	
Tb	3.4	3.7	3.6	(··
Dy	18.8	20.7	19.8	HREE
Но	3.5	4.0	3.8	
Er	9.1	10.7	9.9	
Tm	1.0	1.4	1.2	
Yb	6.7	8.1	7.4	
Lu	0.9	1.2	1.0	
TREE	410.6	431.6	421.1	

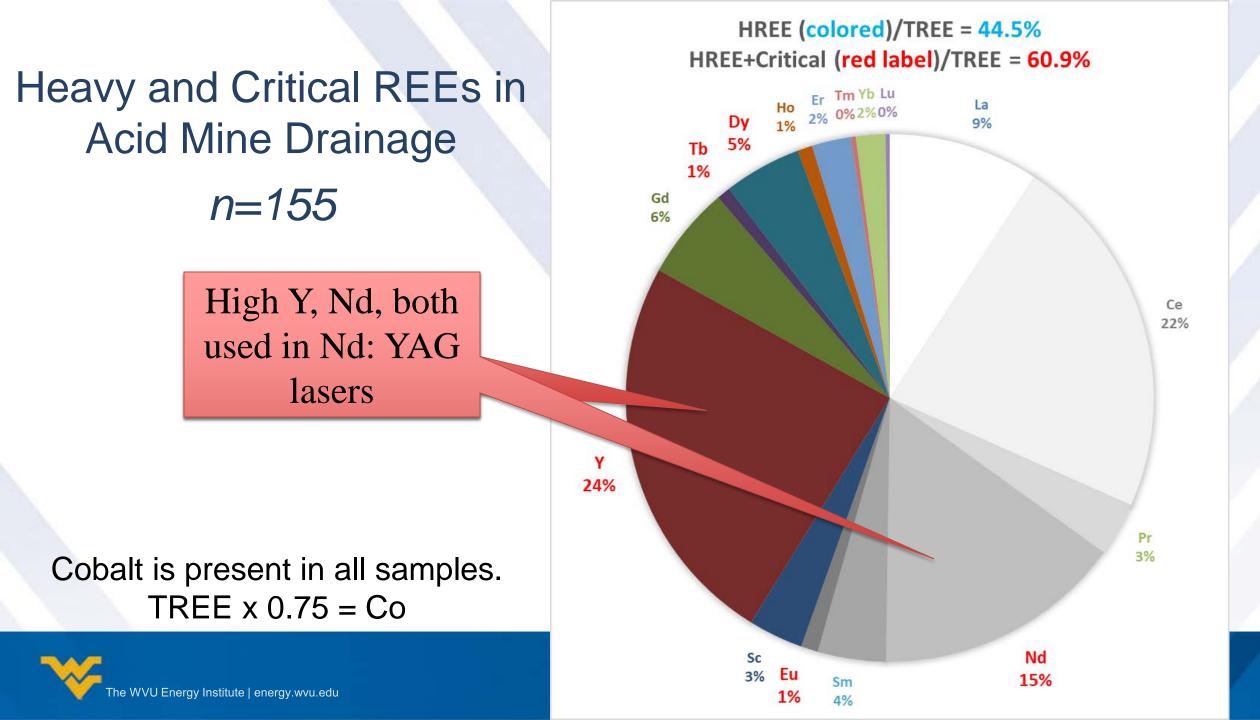
The WVU Energy Institute | energy.wvu.edu

REE in NAPP vs. CAPP whole coal. Physical separation can increase REE concentrations to about 500-600 g/t


	Pittsburgh	n Seam	
-	mg TRE		
	max	146.3	<u> </u>
	mean	34.6	NAPP
	min	7.3	
	st. dev.	22.0	
	Eagle S	eam	
	mg TRE	E/kg	
	max	225.7	<u> </u>
	mean	49.5	CAPP
	min	9.3	
	st. dev.	42.2	

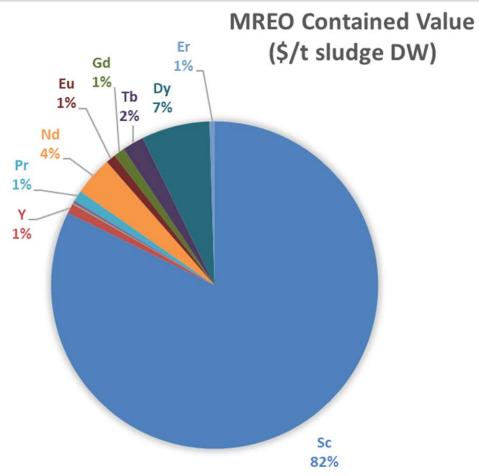
AMD treatment concentrates REE in sludge to about 700 g/t




The WVU Energy Institute | energy.wvu.edu

All REEs precipitate to AMDp with nearly equal enthusiasm

Distribution of HREE in AMD sludge is similar to south China clays




REE concentrations and weighted in situ value Scandium represents 82% of contained value.

		TREE g/t DW	% TREE		\$/kg elemental		weighted value \$/kg TREE		Scandium represents 82 AMD derived F
LREE	La Ce Pr <mark>Nd</mark> Sm	39.2 95.6 14.1 65.0	3.3% 15.3%	\$ \$ \$	7.00 7.00 85.00 60.00	\$ \$ \$ \$	0.65 1.57 2.81 <mark>9.16</mark>	4	Gd 1% Eu 1% Dy 1% 7%
Critical	Sm Eu Sc Y Gd	17.8 4.4 14.3 103.3 24.2	3.4% <mark>24.2%</mark> 5.7%	\$ \$ \$ \$	7.00 150.00 15,000.00 35.00 55.00	\$ \$ \$ \$	0.29 1.57 504.32 8.49 3.12		Nd 4% 1% Y_ 1%
HREE	Tb Dy Ho Er Tm Yb	3.6 20.2 3.9 10.2 1.3 7.7	0.9% 4.7% 0.9% 2.4% 0.3% 1.8%	\$ \$ \$	550.00 350.00 95.00	\$ \$ \$	4.68 16.62 2.28		
The WVU	Lu sum	1.1 425.9	0.3%			\$	555.56		

Scandium represents 82% of the metal value in AMD derived REEs. n=155

Contained sludge value=market value of REEs excluding transport and processing

The WVU Energy Institute | energy.wvu.edu

Small AMD sludge drying cell 0.5 ac, 10 ft deep, 80% moisture Sludge DW 2,712 t

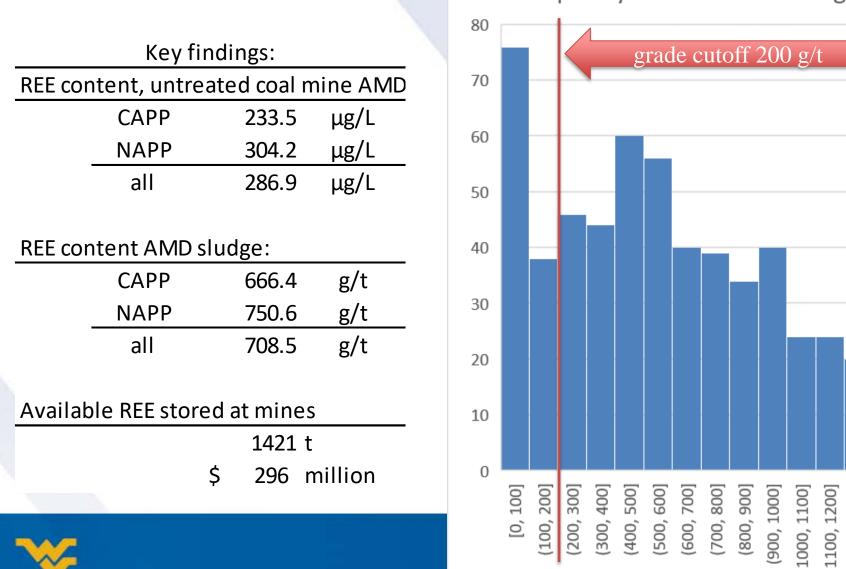
Contained REE value = \$365,963

Accessibility/Extractability/Dewatering

WVDEP-Omega AMD treatment site 14 Geotubes in cell: Contained value \$808,901

Estimated REE production CAPP/NAPP

Sludge cells sampled, this project			76
Sludge (Dry)		1,637,312	m ³
Sludge		3,602,086	tons DW
average TREE grade		708.5	g/t
TREE		1,421	tons DW
REE Basket Price (MREO)	\$	237.23	/kg TREE
contained TREE value	\$3	37,103,830	



Estimated annual REE production: Appalachian Basin

	low	High	
AMD production	1,503,371	6,626,156	gpm
avg. TREE concentration	0.269	0.269	mg/L
Annual TREE production	807	3,555	tons/year
REE Basket Price (MREO)	\$ 237.23	\$ 237.23	/kg
Contained TREE value	\$ 191,362,343	\$ 843,435,793	/yr

Summary: The AMD sludge resource

Frequency distribution: Sludge REE concentration (n=631)

1200, 1300]

1300, 1400]

1400, 1500]

1500, 1600]

(1600, 1700] (1700, 1800]

1800, 1900]

1900, 2000]

2000, 2100]

2100, 2200]

2400]

2300,

2200, 2300]

2500]

2400,

The WVU Energy Institute | energy.wvu.edu

1. High proportion of heavy and critical REE: 45%, 60%

- 2. Very low U, Th <2%
- 3. Nearly as much Co as REE

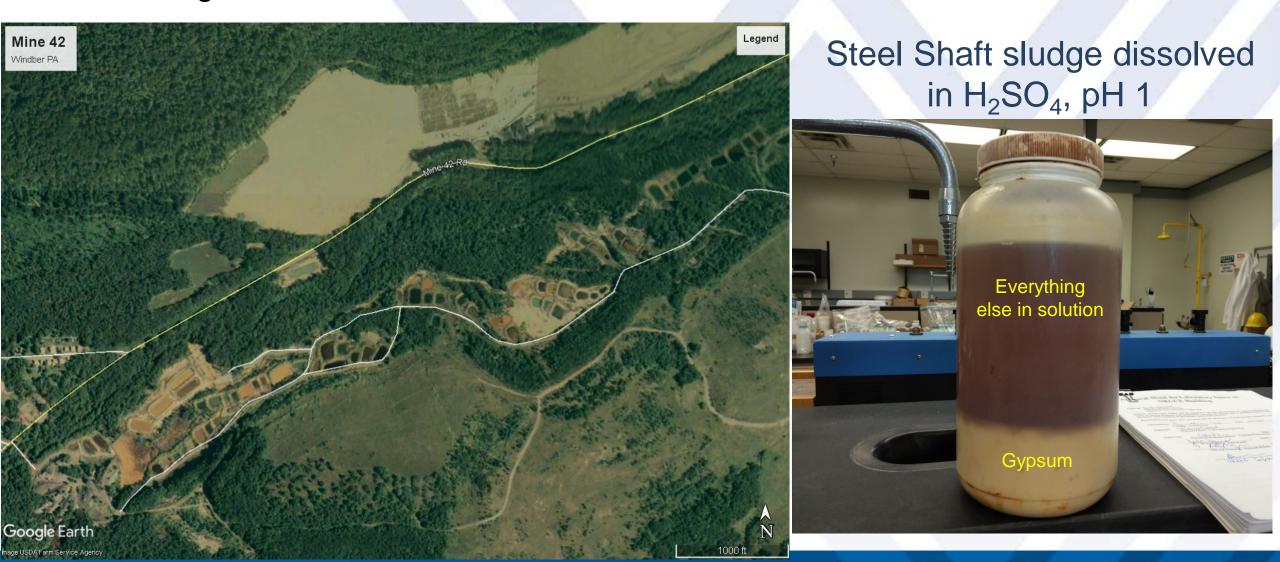
The WVU Energy Institute | energy.wvu.edu

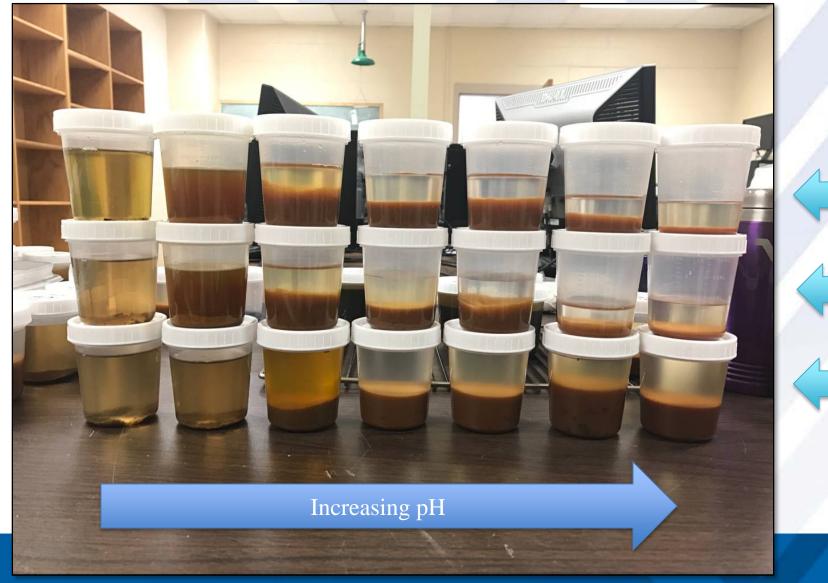
	Sludge (g/t)					
	CAPP	NAPP	All			
n =	144	485	629			
La	79.2	58.3	68.7			
Ce	160.7	162.5	161.6			
Pr	23.7	24.3	24.0			
Nd	104.3	113.8	109.0			
Sm	26.4	32.0	29.2			
Eu	6.4	8.4	7.4			
Sc	12.6	20.9	16.7			
Y	151.7	192.8	172.3			
Gd	34.5	44.2	39.3			
Tb	5.1	7.0	6.0			
Dy	28.3	39.0	33.6			
Но	5.4	7.4	6.4			
Er	14.2	19.9	17.0			
Tm	1.9	2.8	2.3			
Yb	10.4	15.1	12.8			
Lu	1.6	2.3	2.0			
TREE	666.4	750.6	708.5			
LREE	400.8	399.2	400.0			
HREE	265.6	351.4	308.5			
HREE/TREE	39.9 %	46.8%	43.5%			
HREE+critical/TREE	56.5%	63.1%	60.0%			
U	4.8	7.0	5.9			
Th	6.6	7.5	7.0			
U+Th/TREE	1.7%	1.9%	1.8%			
Со	666.0	737.8	701.9			

Valuation based on Mixed Rare Earth Oxides

Basket Price (\$/kg TREE DW)	
CAPP	\$	157.83
NAPP	\$	258.40
Avg. all	\$	237.23

Contained REE Valu	ie (\$/ton sludge	e DW)
CAPP	\$	107.50
NAPP	\$	134.94
Avg. all	\$	129.16


PROCESS DESIGN



AMD sludge cells, Mine 42 Windber PA

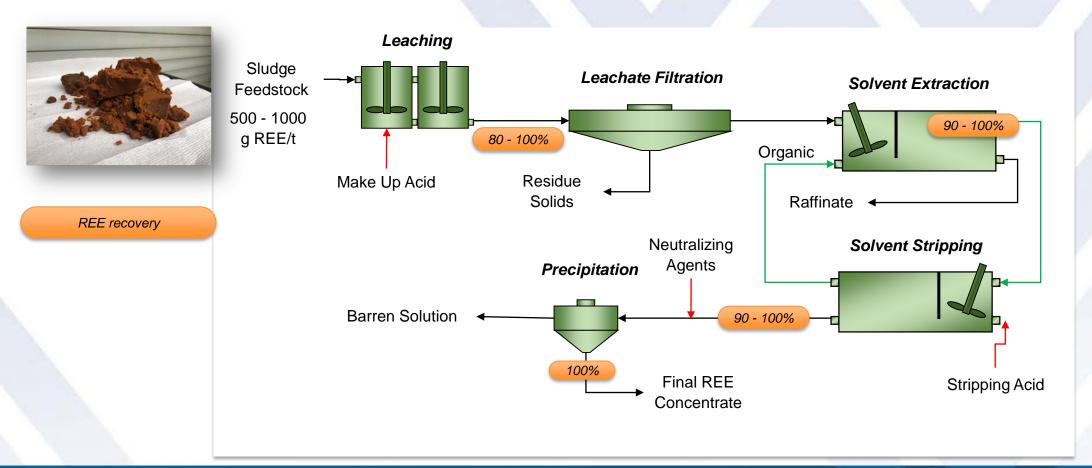
Separations Tests

HCl

HNO3

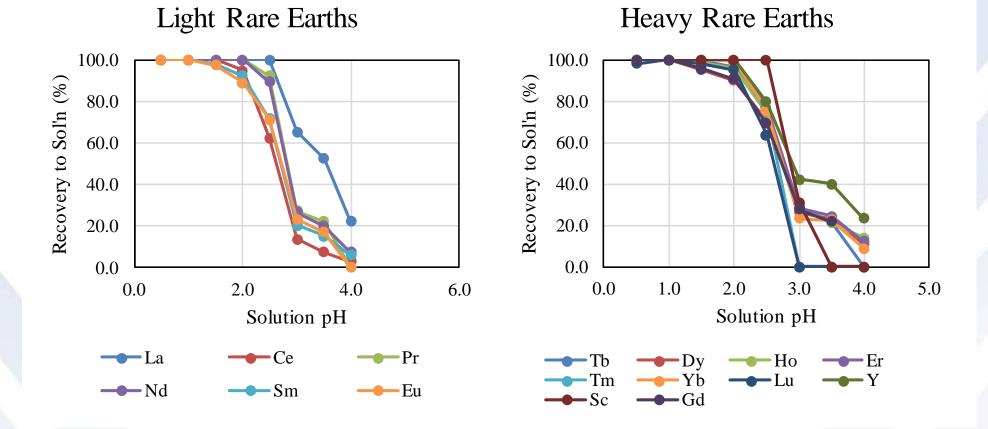
H2SO4

The WVU Energy Institute | energy.wvu.edu


Separations Test

Solvent Extraction in D2EHPA

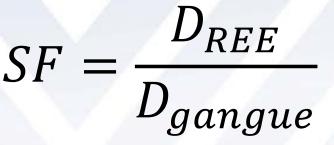
Organic Phase Aqueous Phase


Conceptual Process Flowsheet All processes at ambient pressure and temperature

Acid Leaching at Ambient Temperature and Pressure

Feedstock

Solvent Extraction-Batch Tests



Distribution Coefficients (D)

- REE = 17.7 (as high as 100+ for some elements)
- Gangue Metal = 0.023

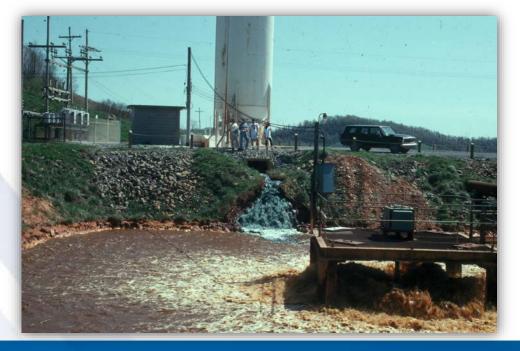
• SF=17.7/0.023=770

 M_{O}

 $M_{\Lambda c}$

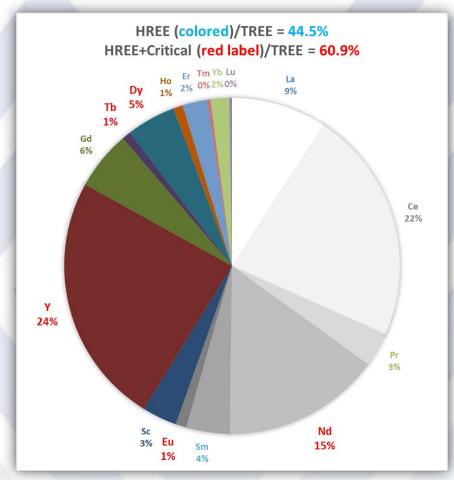
Construction Bench-Scale, Continuous Flow Plant

SUMMARY



Summary

Acid from coal spoils, tailings, and underground mines tends to leach REEs from the surrounding rock.


AMD sludge drying cell Alton WV 26,000 kg REE In situ value: \$6.2 million

Conventional AMD treatment captures nearly 100% of the REEs and concentrates them by a factor of 2600x.

Summary

AMD sludge has a mean REE concentration of 420 g/t, with a fairly consistent elemental distribution. Excluding the lowest grades raises the average to >700 g/t. High proportion of heavy and critical REEs

A continuous, bench scale ALSX unit is currently under construction. Operational early June 2018

Revenue potential: two scenarios (we are in the early stages of optimizing the modular plant)

Parameter	modular plant	Centralized plant
	6.25 t/hr	2100 t/day
sludge feed grade	425 g/t, 65% moisture	
overall process recovery	87.20%	
weighted average metal quotation	\$225/kg REE	
inherent value	\$96/t plant feed	
realization	\$6100/t concentrate	
REE concentrate production	1.36 t/day	29 t/day
internal rate of return	10%	46%
payback period (operating years	18.5 years	2.5 years
Net present value (1=10%)	\$ 47,217	\$ 63,454,000

Risk: REO, SREO

High confidence

- REE distribution
- REE grade
- Regional/local resource dimension
- Prediction based on site conditions

Low confidence

- Elemental separability through ALSX
- REO distribution through ALSX
- Processing costs
- Market
- Valuation

For more information, please contact:

Paul Ziemkiewicz, PI Director, WVU Water Research Institute Morgantown, WV <u>pziemkie@wvu.edu</u> 304 293 6958

