Application of CDM to Renewable Energy Projects in Emerging Market Countries

A Case Study of Methane-to-Markets

Global Workshop on Grid Connected Renewable Energy
Washington, DC
September 2, 2009

Bill Meade
Miguel Franco
Overview of CDM

- What is CDM?
- What is the CDM Process?
- What are the CDM criteria?
- Where are the CDM project located?
- What are the different types of CDM projects?
- What are the financial benefits of CDM?
- What are the costs of CDM?

Methane-to-Markets

- Why is methane important as a Greenhouse Gas?
- What are the Methane-to-Market countries?
- What are typical methane recovery projects?
- Resource assessment for methane recover in the Philippines agriculture sector
- Case study of landfill gas recovery project in Mexico
What is CDM?

Clean Development Mechanism (CDM) is one of the cooperative mechanisms in the Kyoto Protocol of the Framework Convention on Climate Change (UNFCCC).

Two main goals:

- Contribute to achieving sustainable development in Non-Annex I countries (developing countries).
- Assist Annex I countries (industrialized countries) in achieving their emission reduction targets in a cost-efficient manner in exchange of Certified Emission Reductions (CERs).

As of 2008, there are currently 978 registered CDM projects all over the developing world.
What countries are participating in CDM...

The Clean Development Mechanism (CDM) is one of the three flexible mechanisms contained in the Kyoto Protocol. It allows a country with an emission-reduction or emission-limitation commitment (Annex B Party) to implement an emission-reduction project in developing countries.

Participation in the Kyoto Protocol, green indicates countries that have signed and ratified the treaty, yellow is signed, but not yet ratified, grey is not yet decided and red is no intention of ratifying.
What are the main steps in the CDM project cycle...

The process begins with the submission of a **Project Design Document**

- General description of the project
- Proposed baseline methodology
- Timeline and crediting period
- Monitoring methodology
- Calculation of GHG emissions by source, and
- Stakeholder comments.

...and ends with the issuance of Carbon Emission Reduction units (CERs).

<table>
<thead>
<tr>
<th>National Approval</th>
<th>Validation</th>
<th>Registration</th>
<th>Monitoring</th>
<th>Verification/Certification</th>
<th>Issuance of CERs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA determines if PDD meets sustainable development objectives?</td>
<td>DOE determines if Project meets CDM requirement</td>
<td>CDM Executive Board registers project</td>
<td>Project sponsor estimates CER generated</td>
<td>DOE reviews actual emission reductions</td>
<td>CDM issues applicable CERs</td>
</tr>
</tbody>
</table>
What are the criteria for CDM projects to qualify for CERs…

In reviewing the PDD, the following four criteria must be met:

• **Sustainability** – host country determines whether project meets “sustainable development” criteria

• **Environmental additionality** – the project would not exist without CDM financing, i.e., additional emission reductions, and therefore not “business-as-usual”

• **Financial additionality** – Carbon Emission Reduction units (CERs) are not financed with Official Development Assistance (ODA)

• **Governmental approval** – both host and buyer country Designated National Authorities (DNA)s must approve CDM project activity
What are the different categories of CDM projects…

CDM projects typically fall into one of the following categories:

- **Small-scale project activities**: projects meeting the small-scale project eligibility criteria

 (i) renewable energy <15 MW,

 (ii) energy efficiency improvement <60 GWh/yr,

 (iii) other projects <60 kt CO$_2$e

 Small-scale CDM projects are entitled to use simplified procedures.

- **Large-scale project activities**: non small-scale project. An environmental impact assessment is required for large-scale projects.

- **Programme of Activities (PoA)** (often called Programmatic CDM): voluntary action, implementing a policy, measure or stated goal, coordinated by a public or private entity, resulting in additional emission reductions.
Where are the current CDM projects located…

Geographic Distribution of CDM Projects

- **34%** for China
- **17%** for Middle East
- **14%** for East/South East Asia
- **8%** for Central America
- **14%** for Africa
- **1%** for South America
- **1%** for Central Asia
- **3%** for Central Asia
- **2%** for India
- **1%** for Others

© PA Knowledge Limited 2008.
What are the most common types of CDM projects...

Renewable Energy and LFG Projects

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Registered CDM Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass energy</td>
<td>198</td>
</tr>
<tr>
<td>Hydro</td>
<td>170</td>
</tr>
<tr>
<td>Wind</td>
<td>132</td>
</tr>
<tr>
<td>Landfill gas</td>
<td>81</td>
</tr>
<tr>
<td>Biogas</td>
<td>55</td>
</tr>
<tr>
<td>Geothermal</td>
<td>6</td>
</tr>
<tr>
<td>Solar</td>
<td>4</td>
</tr>
<tr>
<td>Tidal</td>
<td>1</td>
</tr>
</tbody>
</table>
What are the financial benefits of CDM…

• 0.5 – 7% points Internal Rate of Return (IRR) boost or US$5-16 /MWh for renewable energy projects from CDM financing

• 5 – 60% points IRR boost for landfill gas and other methane reduction projects, depending upon the project type and emissions factor (baseline)

• Up-front payments for CERs possible to improve project cash flow

• CDM projects may help developer to obtain conventional financing (bank loans, etc) or qualify for concessionary financing from the new Carbon Investment Fund administered by The World Bank
What is the cost related to the registration of CDM projects...

<table>
<thead>
<tr>
<th>Average tons of carbon dioxide equivalent reductions per year over the crediting period</th>
<th>US Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 15,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>15,000 – 50,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>50,000 – 100,000</td>
<td>$15,000</td>
</tr>
<tr>
<td>100,000 – 200,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>> 200,000</td>
<td>$30,000</td>
</tr>
</tbody>
</table>

Indicative prices compiled by UNFCC
What is the Methane-to-Markets Partnership…

The M2M Partnership is an initiative led by the U.S. Environmental Protection Agency to reduce global methane emissions to:

- enhance economic growth,
- promote energy security,
- improve the environment, and
- reduce greenhouse gases

M2M Partner countries are:

- Argentina, Australia, Brazil, Canada, Chile, China, Colombia, Ecuador, European Commission, Finland, Germany, India, Italy, Japan, Kazakhstan, Mexico, Mongolia, Nigeria, Pakistan, Philippines, Poland, Republic of Korea, Russia, Thailand, Ukraine, United Kingdom, United States, Vietnam.
Why is methane important as a Greenhouse Gas...

Greenhouse gas: gas present in the atmosphere, which is transparent to incoming solar radiation but absorbs the infrared radiation reflected from the earth’s surface.

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Main sources</th>
<th>Atmospheric lifetime</th>
<th>Equivalent CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>burning of fossil fuels and deforestation</td>
<td>Variable</td>
<td>1</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>livestock enteric fermentation, manure management, landfills</td>
<td>12 years</td>
<td>21</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>agricultural activities</td>
<td>114 years</td>
<td>310</td>
</tr>
<tr>
<td>Fluorinated Gases</td>
<td>refrigeration systems</td>
<td>Up to 50,000 years for tetrafluoromethane</td>
<td>Up to 23,900 for sulphur hexafluoride</td>
</tr>
</tbody>
</table>

As shown in the table above, one ton of methane has the Greenhouse Gas equivalent of 21 tons of carbon dioxide.
The M2M Partnership focuses on four key sectors; PA is currently working in the first three:

- **Agriculture**
 - Livestock (e.g. dairy, feedlots)
- **Agro-industry:**
 - Distilleries/ethanol plants,
 - Sugar mills,
 - Fruit and juice processing
 - Starch (cassava, corn)
 - Palm oil
 - Slaughterhouses
- **Landfills**
- **Oil and Gas (flaring)**
- **Coal mines (coal bed methane)**
Developing a resource assessment: a step-by-step approach

- Country profiles
- Global databases and publications
- Country reports on specific sectors
- Multilateral banks studies (e.g., WB, IADB, ADB)

- Based on major sectors identified
- Representative sites
- Key players from each sector
- Associations (national and regional)

- Based on insights and information from key players
- Industry-specific databases and publications
- Sector-specific information from key government institutions
PA performed a resource assessment of the methane emissions and recovery potential in the agriculture sector.

<table>
<thead>
<tr>
<th>Industry/ Sector</th>
<th>Geographical Coverage</th>
<th>Carbon Emission Reduction (MT CO$_2$e /year)</th>
<th>Emission Reduction From Fossil Fuel Replacement (MT CO$_2$e /year)</th>
<th>Total Emission Reduction (MT CO$_2$e /year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine Farming</td>
<td>Regions III, IV-A, VI</td>
<td>1,541,000</td>
<td>247,500</td>
<td>1,788,500</td>
</tr>
<tr>
<td>Alcohol Distillery</td>
<td>Nationwide</td>
<td>478,000</td>
<td>84,000</td>
<td>562,000</td>
</tr>
<tr>
<td>Coconut processing</td>
<td>Region IV, X, XI</td>
<td>162,500</td>
<td>28,500</td>
<td>191,000</td>
</tr>
<tr>
<td>Slaughterhouse</td>
<td>Nationwide</td>
<td>10,500</td>
<td>1,800</td>
<td>12,300</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,192,000</td>
<td>361,800</td>
<td>2,553,800</td>
</tr>
</tbody>
</table>
Landfill Example: Nuevo Laredo Landfill, Mexico

PA advised the city of Nuevo Laredo in developing a landfill gas recovery project.

Characteristics of the landfill
- Period of operation: 1994 – 2010
- Total capacity: 2.62 million MT
- Waste disposal rate: ~500 MT/day
- Population: 355,000

Results of the study
- Gas recovery: ~1,083 m³/hr, increasing to a maximum of ~1,332 m³/hr in 2011, following site closure and expansion of the well field into all areas of the landfill.
- Power plant sizing: 1.70 MW power plant (consisting of two (2) 0.85 MW engines).
- Projection of methane emissions reduction: 831,210 MT CO₂e, plus 133,057 MT CO₂e by displacing electricity produced via other sources.
Landfill Example: Economic opportunities of the project

<table>
<thead>
<tr>
<th>Project Period</th>
<th>Emission Reduction Price ($/MT)</th>
<th>Equity Investments (%)</th>
<th>Net Present Value (x1,000 $)</th>
<th>Internal Rate of Return (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 - 2021</td>
<td>6</td>
<td>100</td>
<td>$1,668</td>
<td>19.8%</td>
</tr>
<tr>
<td>2007 - 2021</td>
<td>10</td>
<td>100</td>
<td>$2,685</td>
<td>29.6%</td>
</tr>
<tr>
<td>2007 - 2021</td>
<td>6</td>
<td>25</td>
<td>$1,576</td>
<td>46.6%</td>
</tr>
<tr>
<td>2007 - 2021</td>
<td>10</td>
<td>25</td>
<td>$2,593</td>
<td>89.6%</td>
</tr>
</tbody>
</table>

- Cost of project (flaring only): $900,000
- Cost of energy generation: $2,500,000
- Benefits from CERs: ~$350,000/yr @ $6/MTCO$_2$e