Utility Efforts to Promote Energy Efficiency

Global Energy Efficiency Workshop March 6-13, 2010

Outline

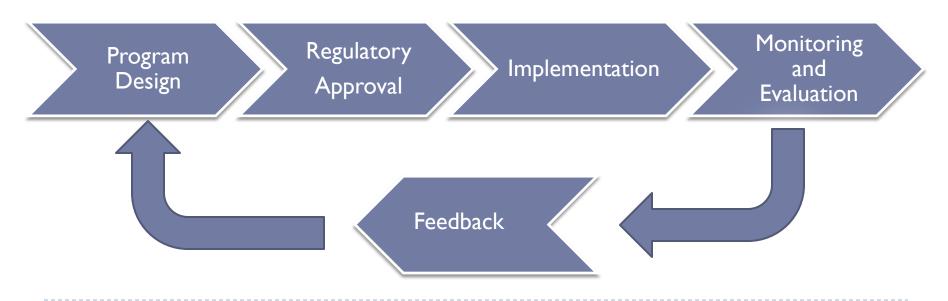
- Overview of National Grid USA
- Background on Energy Efficiency in Massachusetts
- Program Planning and Approval Process
- Benefit/Cost Analysis
- 2010 Program Budget
- Program Design Goals
- Program Overview
- Final Thoughts

Overview of National Grid USA

- One of the largest investor owned energy companies in the world
 - \$24 billion market cap
- US operations include:
 - ▶ 4.4 million electric customers*
 - ▶ 3.4 million gas customers
 - 4,200 MW of fossil fired generation under contract to LIPA

Corporate Responsibility

- Commitment to reduce company-wide greenhouse gas emissions by 80% by 2050
- Rated as a "Platinum Company" in the Business in the Community 2006 Corporate Responsibility Index and a "Global Top 10" company out of those with significant global operations


^{*} Includes 1.1 million customers of the Long Island Power Authority served under a long-term service contract

Background on Energy Efficiency Efforts

- National Grid first initiated large-scale energy efficiency programs in the late 1980's
- Massachusetts electric subsidiary has been expanding and improving these programs consistently over time
- Through 2009, utilities in Massachusetts invested \$3 billion and delivered 90 thousand GWh of energy savings
- In 2008, Massachusetts enacted legislation to significantly ramp up energy efficiency efforts
 - Aggressive efforts make efficiency the "First Fuel"
 - Intent is to capture all energy efficiency opportunities that are cheaper than buying power from power plants
 - Expect to meet 30% of 2020 energy needs through efficiency
 - Utilities and other stakeholders are working together through a new Energy Efficiency Advisory Council
 - Program funding has been expanded System benefits charges, carbon allowance auction proceeds, and regional energy market revenues
 - More than \$1 billion to be invested over the next three years
 - For full plan, see: http://www.ma-eeac.org/docs/DPU-filing/ElectricPlanFinalOct09.pdf

Energy Efficiency Planning and Approval Process

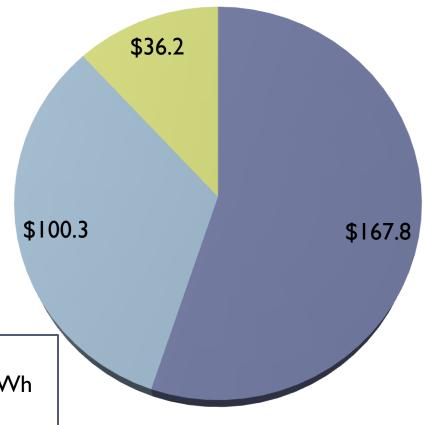
- > Programs are designed and approved in a multi-step process
- > Current plans are developed jointly with other utilities and interested parties
- > Regulator has recently approved a three year plan for the period 2010 thru 2012
- Monitoring and evaluation results inform program design and support shareholder incentive calculation

Benefit Cost analysis determines program offerings

Benefits

- Value of energy savings
- Electric system benefits

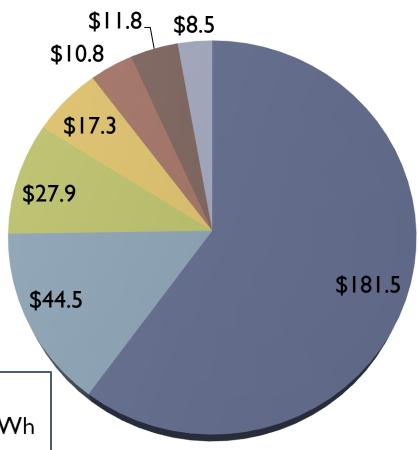
Costs


- Implementation costs
- Evaluation costs
- Rebates
- Shareholder incentives
- Taxes
- Customer costs
- ➤ Benefit/Cost Ratio is calculated over the useful life of the energy efficiency measure
- ➤ Overall, BCR for MA 2010 program is 3.53
 - Individual programs range from 6.56 (C&I New Construction) to 1.24 (Residential Cooling and Heating Equipment)

Massachusetts Program Budget (2010)

Millions of Dollars

- Residential
- Low-income


Total Budget \$302.3 million Lifetime Energy Savings 7,407,176 MWh Average cost: \$.04081 per kWh

Massachusetts Budget by Component

Millions of Dollars

- Technical Assistance
- Program Adminstration
- Shareholder Incentive
- Evaluation
- Marketing
- Lost Base Revenue

Total Budget \$302.3 million Lifetime Energy Savings 7,407,176 MWh Average cost: \$.04081 per kWh

Program Design Goals

- Avoid lost opportunities
- Provide a simple application process
- Serve all customer classes
- Efficient delivery
- Provide verifiable savings
- Transform markets

Program Overview

- > Programs are designed to reach each customer class
 - All customers contribute to the cost of the program
- ➤ Much of the focus is on new construction and major renovation
 - Incremental costs are lower in these cases
 - Failure to reach these projects results in "Lost Opportunities"
- > Rebate amounts can be determined in advance (prescriptive) or on a case by case basis (custom)

Market	Target		Rebate Type	
	New Const.	Retrofit	Prescriptive	Custom
Residential	✓	✓	✓	
Small C&I		✓	✓	
Large C&I	✓	✓	✓	✓

Residential program

- Target end uses include:
 - Building shell measures
 - Duct and air sealing
 - ▶ HVAC quality installation
 - Energy Efficient lighting
- Programs delivered through:
 - Retailers
 - Builders
 - Program Vendors
 - Trained contractors
- Close collaboration on low-income household program with local Community Action Program agencies

Small Commercial and Industrial program

- Program criteria
 - Under 200 kW load
- "Hassle-free" for customers
 - Customer signs contract
 - Company selected vendor installs energy efficiency equipment
 - Company pays for 70% of cost
 - Customer has option to spread 30% cost share over 24 months on electric bill,
 with no interest
- Vendors selected through competitive bidding process
- Pre and Post installation inspections at 20 to 30% of jobs

Large Commercial and Industrial program

- Available to all commercial and Industrial customers
 - Municipal customers receive higher rebates
- Marketed by Company employees
- Focus on New construction and Major retrofits
 - New construction rebates up to 70% of equipment cost (1.5 year payback)
 - Major retrofit rebates up to 50% of equipment costs (2 year payback)
- Two approaches to rebates
 - Prescriptive savings and rebates predetermined; must install approved equipment
 - Custom engineering analysis of energy savings; work with customer's design firm and vendors
- Only measures exceeding local codes and standards subsidized
- Pre and post installation audits

Need to monitor rebates over time*

Standard Incandescent

Compact Fluorescent

Retail Price \$1.00

Net Cost \$1.00

Retail Price \$5.00 Less Rebate -\$4.00

Net Cost

\$1.00

Properly designed subsidies can remove market barriers

Need to monitor rebates over time*

Standard Incandescent

Compact Fluorescent

Retail Price	\$1.00	Retail Price	\$5.00
		Less Rebate	<u>-\$4.00</u>
Net Cost	\$1.00	Net Cost	\$1.00

Properly designed subsidies can remove market barriers

Retail Cost	\$4.00
Less Rebate	<u>-\$4.00</u>
Net Cost	\$0.00

Subsidies can become uneconomically large as market prices change

Final thoughts

- Programs in Massachusetts have become more comprehensive and sophisticated over time
- Lighting retrofits can provide quick wins
 - "Low hanging fruit"
- Building code and appliance efficiency upgrades can help transform the market
- Over time, there will be more emphasis on alternative ways to finance energy efficiency
 - Market based solutions
 - More third party involvement
- More opportunities exist to consolidate gas and electric efficiency efforts

Questions?

Contact Information

For follow-up questions:

- ljreilly@att.net
- > 508-380-7780 cell
- > 508-435-8329 fax

Larry Reilly