Low carbon generation outlook and global power market uncertainty

Discussion Document December 12, 2011

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

McKinsey&Company

Today's conversation

- US greenhouse gas emissions to 2030: a case study
- Sources of uncertainty in today's global power markets
- Baseline scenario to 2020
- Potential deviations, and implications for low carbon power
- Questions

US greenhouse gas abatement: How much and at what cost? US CASE EXAMPLE

Objective: Develop a comprehensive, objective, consistent fact base to inform economically sensible approaches for reducing U.S. greenhouse gas (GHG) emissions

- Analyzed 250+ opportunities to reduce US GHG emissions by 2030
- Covered 7 sectors of the economy buildings, power, transportation, industrial, waste, agriculture and forestry
- Constructed detailed "emissions reference case" based on US government agencies (e.g., DOE, USDA, EPA) for emissions forecasts
- Conducted interviews with 100+ leading authorities and companies, and leveraged McKinsey subject matter experts around the globe
- Received guidance and support from top academics and corporate and environmental sponsors (DTE Energy, Environmental Defense, Honeywell, National Grid, NRDC, PG&E, Shell).
- The Conference Board co-published and disseminated the report

Government agencies forecast U.S. emissions to rise by 2030 US CASE EXAMPLE

Gigatons CO2e

SOURCE: Team analysis

US CASE EXAMPLE

Capturing the potential of energy efficiency opportunity presents several barriers

Cost	 Consumers apply different discount rates than societal discount rates; or do not do a NPV calculation at all and instead do a payback analysis Consumers purchase for specific uses with a distribution of utilization times and may not experience positive NPV on lightly used equipment Regardless of payback / discount, thin working capital may prevent purchases 	
Agency issues	 Capital expenditures may be required of the owner, while the operator/tenant receives the savings Time of ownership / occupancy increases the implied discount rate to discount The builder of the building will not receive returns on the investment in energy efficiency as they will not receive higher home prices for equipment installed 	
Quality	 Perception of power or performance, "energy efficient lights aren't bright enough" or "the washing machine wont clean my clothes with that little water" Actual quality issues (e.g. overheating CFLs, heat pump breakdowns) 	
Education/ awareness	 Consumers are unaware of savings potential Consumers are skeptical of cited savings numbers 	
Availability	 Emergency replacements limit shopping periods and often times are supplied by first available product which is usually a low capital cost product to keep independent plumber / contractor's capital costs low High efficiency products are not available in all channels (e.g. CFL at grocery) 	

Demand side innovations are changing the consumer energy landscape

Smart Home of the Future will drive significant energy usage reduction

ILLUSTRATIVE EXAMPLE ITALY

1 All fuels

2 Assuming same volume/mix as 2010 3 HVAC: 35%; Lighting: 4% Phase 1, Activity 1

Growth of residential switching in retail electric power

Households that have switched to alternative electric power suppliers

* IL, OH, NJ, MA, DE, DC, ME, NH, RI SOURCE: state utility regulatory commissions

Key sources of uncertainty in global power markets

Electricity consumption is closely correlated with overall economic development

Annual electricity use

kWh per capita

Global electricity demand is expected to continue to grow, with emerging economies driving the vast majority of the expansion

* Including Mediterranean Europe and North Africa and Baltic/Eastern Europe. Source: IEA; McKinsey Global Institute Global Energy Demand Model 2009

In response to electricity demand growth, the worldwide power generation fleet will expand significantly between 2010-2020

Worldwide generation capacity evolution, 2010-2020 $_{\mbox{GW}}$

Fossil generation will account for the largest fraction of both new capacity and (barely) new investment

Percent

Large emerging economies will account for the majority of new capacity additions in 2010-2020; China is by far the largest single contributor

Percent; 100%=1,895 GW

Under the "default" scenario, China rapidly grows its fleet, Europe mainly replaces fossil capacity with renewables, and the US fleet changes little

Net capacity additions, 2010-2020 GW

17 Coal -18 365 -21 Oil -38 -1 Gas 25 52 -1 26 Nuclear -23 5 86 Hydro 26 Wind 106 63 62 38 17 9 Solar Aggressive replacement of Accelerated expansion to Limited new construction existing fleet with relative to existing stay ahead of demand renewable growth Heavy incentives Coal as the primary fuel

The projected additions will partially 'green' the generation fleet, but not shift the base dramatically – except in Europe

Installed capacity, GW

Some potential deviations away from the "default" path

Significant slowdown in EU/US renewables buildout

- Worsening of renewable economics relative to "conventional" sources
- Subsidies becoming unaffordable or politically unacceptable
- Difficulty obtaining financing for new projects

2 Accelerated coal retirements in the US

- Structural reduction in demand as a result of the crisis?
- Long-term reduction in gas prices
- Sustained, aggressive emissions reduction efforts

- "Default" path shows enormous increase in GHG emissions, and also raises "security of supply" concerns
- There are early indications for a push towards loweremissions paths (energy efficiency, nuclear, wind)

1. SIGNIFICANT SLOW DOWN IN RENEWABLES IN EUROPE AND THE US Europe and the US have established very aggressive renewables targets for 2020 – but will they be reached?

Proposed target
 Existing target
 Current generation

1 Assumes 25% average capacity factor for renewables

SOURCE: Current national plans on governments' declarations, National Energy Administration, European Energy and transport EU report (trends to 2030), McKinsey analysis McKinsey

U.S. is introducing aggressive new regulations for fossil generation

NOT EXHAUSTIVE

	Description					
Clean Air Transport Rule (CATR)	 Covers plans across 31 Eastern states Will reduce SO₂ by 71% NO_x by 52% by 2014 (vs. 2005 levels) A second transport rule covering National Ambient Air Quality Standards for NO_x is expected next year 					
_	FPA will establish maximum achievable control technology (MACT) standards					
CAA Title III: Mercury and other air toxics	 If A will establish maximum achievable control technology (wACT) standards for new and existing coal-fired power plants MACT likely to be set for other air toxics, such as acid gases and heavy metals 					
Clean Water Act: Cooling Water Intake Structures	 EPA may require closed-loop cooling systems at larger plants that currently use once-through cooling CA already issued a rule to eliminate once-through cooling at coastal power plants 					
Coal combustion residuals	 Failure of a TVA coal ash pond drew scrutiny EPA issued two options in May 2010 Eederal enforcement and phase out 					
impoundment	 State enforcement with continued use 					
Emerging Green House Gas rules	 Requires use of Best Available Control Technology (BACT) for large fixed industrial facilities emitting GHGs Preliminarily thresholds set at 100,000 tons/vr of CO₂e for new facilities: 					
	75,000 tons/yr for expansion of existing facilities					

2. ACCELERATED COAL RETIREMENTS IN THE US

The amount of U.S. coal that is uneconomic to retrofit will depend on which regulations are enacted and the gas price outlook

	Additional coal capacity uneconomic					Base case"	
	to retrofit by 2020 ¹ GW	Investments needed for compliance					
Cumulative set of environmental regulations ²	At risk under current conditions ³	75	24	13	11	 N/A Sufficient SO₂/NO_x emission controls (varies by player) FGD, SCR and fabric filters Closed-loop cooling installed (chiller) Ash storage pond installed 	
	CATR only	88	29	16	15		
	+ MATS	91	35	22	20		
	+ 316(b) ⁴	98	47	30	27		
	+ CCR regulation	99	49	31	28		
	+ \$10/ton CO ₂ tax	128	69	41	33	• N/A	
		4	6	8	10	_	

1 In addition to 11GW already planned for retirement by 2020; analysis includes all US coal-fired generation 50MW+ in capacity (~310GW total); all cases assume average coal price of ~\$2/MMBtu

2 CATR regulation assumes reduced emission levels of SO $_2$ (71% reduction) and NO $_x$ (52% reduction)

3 Due to age of plants, impact from renewables, and state-level environmental legislation

4 Operation of cooling infrastructure reduces overall plant capacity by 4% where retrofits necessary; de-rating losses included in uneconomic estimate

SOURCE: McKinsey analysis, Energy Velocity

2. ACCELERATED COAL RETIREMENTS IN THE US PJM, Southeastern, Central and MISO contain ~75% of uneconomic coal capacity in the base case example

BASE CASE

40-50 GW of additional capacity will be needed to maintain reserve margins if uneconomic coal is retired²

Current pipeline of new construction is likely sufficient to meet these needs

1 Incremental uneconomic capacity in addition to 11 GW of capacity already planned for retirement; assumes CATR, MACT, 316(b), CCR regulations enforced, \$0/ton CO2 price; compliance is met through "capital-heavy" methods (e.g., FGD, SCR, fabric filters)

2 Assumes 15% reserve margin must be maintained in each NERC region; demand growth based on EIA projections through 2020

SOURCE: McKinsey analysis, US Energy Information Administration, Energy Velocity

3. SHIFT TOWARDS LOWER GHG EMISSIONS IN CHINA

With favorable economics, EE is considered the first priority for GHG abatement by the Chinese government

Sources: McKinsey climate change cost curve v2.0; NBS; literature search; team analysis

China's "default" generation expansion path is increasingly a concern for the Chinese government

1 Includes emissions associated with deforestation and end-use changes

3 SHIFT TOWARDS LOWER GHG EMISSIONS IN CHINA Wind could reach 100 GW by 2020

100

2020

high

case

2 Proxyed by gas power generation cost

3. SHIFT TOWARDS LOWER GHG EMISSIONS IN CHINA

A shift towards renewables would create excess manufacturing capacity in traditional generation – and potentially displacement of other players

Source: National Power Industry Statistics Express 2008; National Development Bank; analyst report

Questions?

My contact information: —Eoin O Hogain —Eoin_O_Hogain@mckinsey.com