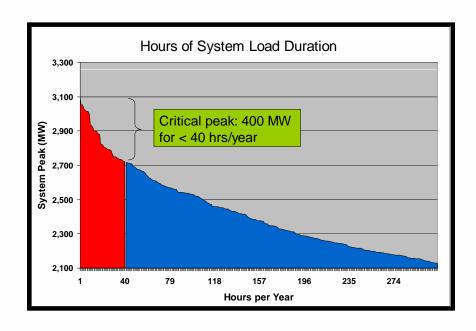
Load Management & Demand Response

May 10, 2010

Why is Demand Response Important Now?

- Growing consensus among federal and state policy managers that insufficient levels of demand response exist in the U.S. electric power system (EPACT 2005, FERC 2003)
- California Energy Action Plan LM and DR are included in the energy stacking order after EE.
- CPUC and CEC have an Order Institute Rulemaking on demand response to have the IOUs explore demand response.
- California wants to adopt load management standards
- Gap in available resources for SMUD
- SMUD emphasis to increase reliability of electric system by reducing peak load
- SMUD offering customers greater choice in helping to manage electricity use through rates and incentive programs



SMUD System Load

- Highest 40 hours responsible for 400 MW
- System load projected to grow by 15% over next 10 years
- Resource gap projected in 2012 and beyond due to expiring bilateral and renewable contracts and growth

Terms

Load Management

- Definition: Any utility program or activity that is intended to reshape a utility's load duration curve
- Reduces or delays the need for new electric generation capacity and reduces fuel consumption for electricity generation

Demand Response

- Definition: means that customers can reduce their electricity use over a given time period, shift that use to another time period, or contribute to grid reliability in response to a <u>price signal</u>, a <u>financial</u> <u>incentive</u>, <u>environmental condition</u>, or a <u>reliability signal</u>.
- Reduce energy use during those few hours of near maximum load each year, can result in "load shifting" to lower price time periods.

Classifying Demand Response Options

- Price-Based customers <u>adjust the timing of their usage</u>
 - Time-of-Use
 - Time-of-Use with Critical Peak Pricing Periods
 - Real Time Pricing
- Incentive-Based customers <u>reduce demand</u> at critical times and receive an incentive
 - Curtailable/Interruptible
 - Direct load control (A/C)
 - Emergency programs for reliability

Focus Group Findings on Rates (as it related to LM/DR)

General:

- Customers readily understood that SMUD's cost of supplying energy is higher in the summer, especially in very hot weather
- Customers understood that they would pay higher rates over fewer summer months and lower rates over more winter months
- Most like a narrow (3-hour) super peak period

Commercial:

- Customers who find it difficult to shift load and/or have flat load prefer a demand charge, and vice versa
- Customers want a minimum of 24-hour notice for CPP event
- Prefer fewer CPP hours with higher prices vs. more hours with lower prices

Residential:

- Customers with flexible lifestyles said they will shift activities off peak
- Want energy savings (from TOU vs. Tier) shown on bill
- Basically like the idea of having pricing choices

Focus Group Findings on LM/DR

General:

- Most customers said they would respond to public pleas for energy conservation during periods of peak demand
- Customers want the ability to override DR events
- Generally more receptive to temperature reset than to AC cycling

Commercial:

- Small and medium customers want education on DR—more likely to participate in DR when it was explained to them
- Some find it challenging to curtail/shift energy usage during peak periods due to industry type or business situation
- Customers were creative in finding ways to adjust their business operations around peak periods
- Many want event notification by cell phone or email

Residential:

- Households with ill or elderly members said personal control of their AC is critical
- Renters find DR challenging because they don't own the AC or have window AC units
- Responses were mixed regarding preference for manual controls vs. "set it and forget it" controls

Current LM and DR Programs

- Curtailment contracts—6 MW
- Temperature-Dependent Rate—16 MW
- Used only in emergencies:
 - Voluntary Emergency Curtailment Program—~45 MW
 - Peak Corps (residential AC cycling)—97 MW cycling, 135 MW shed
- Total dispatchable load = 103 to 141 MW
 - Using AC cycling, and special curtailment contracts
- Total non-dispatchable load = 0 to 61 MW
 - Using Temperature-Dependent Rate and VECP

Proposed LM and DR Offerings

- Program concepts are being evaluated in IRP process
- Designed to be used for active LM and DR
- Residential Customers
 - Air conditioning cycling
 - Air conditioning temperature reset
 - Choice of time-of-use rates, critical peak pricing
 - Public appeal to reduce electrical load

Commercial Customers

- Air conditioning temperature reset (<300 kW)
- Special curtailable contacts (300 kW +)
- Choice of time-of-use rates, critical peak pricing, real time pricing
- Technical assistance to evaluate demand response potential
- Technology incentives for enabling equipment (Auto DR)
- Public appeal to reduce electrical load

How Peak Corps May be Changing Down the Road

- Aging and obsolete Peak Corps infrastructure is forcing SMUD to transition to a modern system
- Leverage AMI as much as possible
- Know when devices become removed
- Giving participants ability to override a limited number of times
- Use to manage system peak loads
- Offer participants more choice
 - Cycling
 - Temperature reset
- New incentive structure
- Devices can be supplied by the utility or purchased by the homeowner at retail locations
- Ability to do targeted load management down to a specific substation area (s) or service territory wide

Demand Response Challenges

Retail Pricing

 Retail price signals do not typically reflect prevailing wholesale market hourly costs

Valuation

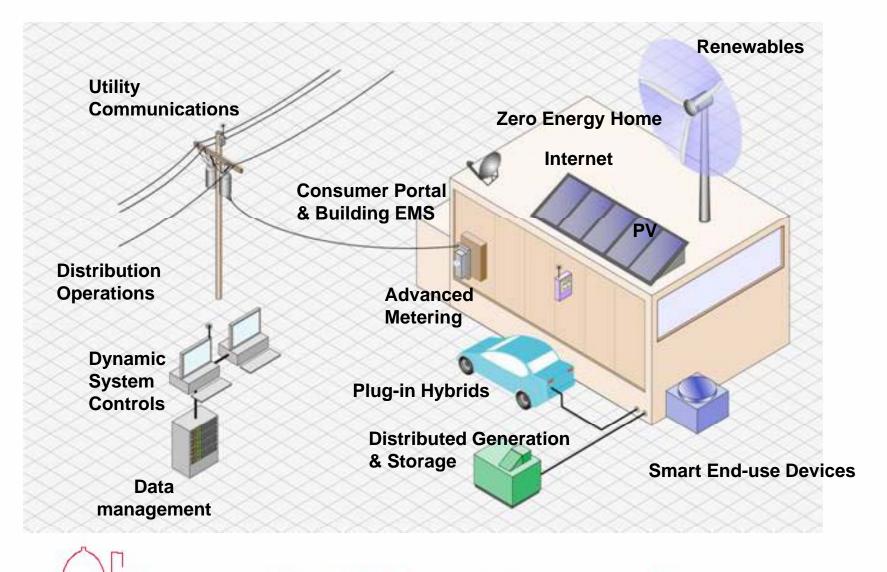
 Methods and practices to establish value of DR programs and dynamic pricing are not there

Integration

 Integration of demand side resources into the supply side involves complex planning and operations

Enabling Technologies

 DR enabling technologies and system integration to achieve sustainable price-responsive demand



Smart Grid Vision

SMUD Smart Grid Elements

Distribution System Smartening

Upgrade SCADA for distribution system automation

AMI

- Intercommunications with SCADA
- Communications with end uses

Demand Response

- System and targeted load control
- Price response

Distributed Generation

- PVs
- CHP
- Plug-In Hybrids
- Storage

Zero Energy Smart Homes

Combines all of the above

