NATIONAL ENERGY TECHNOLOGY LABORATORY

January 4, 2011

DOE/NETL- 402/102309

Modeling of the Costs of CCS for the Nation's Existing Coal-Fired Power Plant Reet

Presented for U.S. En January 2012

FOOL

Energy Association

Carbon Capture Model

• This work was funded by the U.S. DOE/NETL. Enegis would like to gratefully acknowledge their support and guidance

• The Rationale

- 50% of the nation's electric generation is from coal
- The fate of coal-fired generation is uncertain in a carbon-constrained world
- Overall goal is to develop cost/supply curves for retrofitting a scenario sample of the nation's fleet of CFPPs

• The Model

- Quantifies the cost and assess the feasibility of retrofitting the nation's fleet of coal-fired power plants (1088 Units, 332 GW)
- Uses the NETL study, Carbon Dioxide Capture from Existing Coal-Fired Power Plants, (Conesville Study) used as a foundation in terms of cost and layout
- Models costs based on cumulative examination of individual units
- Includes assessment of emissions for SOx and NOx

Modeling Mechanics

Sources of Information

- GIS Data Sources
 - Microsoft Terraserver—USA Imagery

Example showing typical image quality

Source: Microsoft Terraserver, Enegis, LLC, analysis

Sources of Information

- GIS Data Sources
 - Google Maps Imagery

Example Google Maps imagery (color) on a Terraserver Image Base

Carbon Capture Retrofit and Storage Modeling

Sources of Information

• Electricity Market Modules (EMMs)

Source: EIA, see http://www.eia.doe.gov/oiaf/aeo/assumption/electricity.html

‹#>

CAPEX

Investment CAPEX

- The CCM computes IC by the equation:
- (Letdown Turbine Cost + CO₂ Scrubber and Absorber Cost + FGD Cost + NOx Cost)

+

(CO₂ Separation and Compression Cost + Additional Cooling Cost)

+

Additional Land Cost

282 GW (738 Units)

‹#>

Primary FGD

- EPRI Study: Current Capital Cost and Cost-Effectiveness of Power Plant Emissions Control Technologies (January 2010)
- Wet and Dry FGD CAPEX Functions of Nameplate
- CCM Methodology
 - If No FGD then
 - Assume new Wet FGD Construction
 - Calculate Wet FGD CAPEX using Nameplate Function
 - If Wet or Dry FGD then
 - Assume no FGD CAPEX needed
 - FGD outlet concentration of 50 ppm

Sulfur Polishing

- Sulfur Polishing used for scrubbing after Primary FGD down to environmental target of 10 ppm
 - Requires calculation of the unit-specific tonnage of SO_X to be scrubbed by polishing
- CAPEX calculated as function of tonnage
 - \$94.57 /ton SO_X polished (NETL)

NOX/SCR

• EPRI Study: Current Capital Cost and Cost-Effectiveness of Power Plant Emissions Control Technologies (January 2010)

• SCR CAPEX Functions of Nameplate:

- If No SCR NO_X Control then
 - Calculate SCR CAPEX using Nameplate Function
- If SCR NO_X Control
 - Assume no CAPEX needed

 Based on the scenarios in the Conesville Study, calculated as the sum of:

Parasitic Load

• Computed as the Sum of the Parasitic Loads of:

- Newly installed NOx equipment
- Newly installed SO₂
 control equipment
- Additional cooling
- Parasitic steam for amine regeneration (212.91 kWh/tonne C0₂)
- CO₂ retrofit components

Physical Size and Cost Scaling

Physical Size and Cost Scaling

Required equipment geometries were digitized from the Conesville report so they could be scaled, relocated, and rotated to accommodate the remaining plants in the population

Construction Difficulty Factors

Two types of Construction Difficulty Factors

- Retrofit component conflict: More difficult engineering
 - E.g., conflict building letdown turbines, scrubbers, or compression field
 - Increase CAPEX by a scaled factor
 - Results of proprietary FGD construction difficulty study indicate CAPEX increases up to 200%
 - A separate factor will be used for each component and can be adjusted as a scenario
- Existing structure conflict: Component relocation
 - E.g., Railroad or substation
 - Increase CAPEX by a function of nameplate capacity as a relative portion of overall construction costs
- Retrofit component conflict cost impacts generally >> existing structure conflicts

Carbon Capture Retrofit and Storage Modeling **‹#**>

Graphical User Interface

del Updates and Outpu	ts Model Parar	neters plate Header Name:	Avg Net Nameplate Capacity	w MW	Year Sample Choice				
Output On Location Sh Output GEM Sheet	eet Query Heatra	ate Header Name:	Fully Loaded Tested Heat Rate Btu/kWh						
COE Calculator Use Ph I LCOE Calcula Use PSFM LCOE Calcu LCOE Modifiers	tor Jator Modify P	Waxman-Markey Year: 2020 Modify Paths to Files Rath Variables (Files should be in Boot Directory of CCM Model)							
Incl. Carbon Allowance Incl. MUP Cost	e Cost Model Path	C:\CCM\Model\	in hote bicably of cash mode	On Loca File 1	On Location Input File Name: OnLoc CTS Costs xlsx				
Sample Criteria Nameplate Cutoff Heatrate Cutoff Generation Cutoff Retirement Cutoff Emissions Control Federal Operators	Nameplate Option Min Unit Nameplate Max Unit Nameplate Min Plant Nameplate Max Plant Nameplate	Heatrate Optio Min Unit He Max Unit H Min Plant H Max Plant H	eatrate eatrate leatrate leatrate leatrate deatrate Generation Op Min Unit Ge Max Unit Ge Min Plant G Max Plant G	tion Min Unit N en en Sen Retirement Emission	ameplate Threshold (MW): Heatrate Threshold (Btu/kWh) Generation Threshold (GWh): Cutoff Minimum Year: S Control Option	400 10000 2000 2025			
NETL	Scenario Case Parameter CO2 Removal % (Low Cas CO2 Removal % (Medium CO2 Removal % (High Ca	s se) 90 C Case) 90 C se) 90 C	Capacity Factor (Low Case) Capacity Factor (Medium Case) Capacity Factor (High Case)	65 Outp 75 € 85	ut Units nglish Option (Ton) etric Option (Tonne)				

Enegis

Adders and Alternative Cost Structures Tab

CAPEX Adders				nar also constituineanes		Include Water Availa	ability CAPEX Adders
Component Construction Diffic FGD (%): Letdown Turbines (%): Scrubbers and Absorbers (%): Cooling Towers (%): Compressor (%):	Low 25 25 25 25 25 25 25 25	Medium 50 50 50 50 50 50	High 200 200 200 200 200 200	Structure Conflict Adders Plant Cost (\$/kW): Railroad Retrofit/Plant Cost (%): Coal Pile Retrofit/Plant Cost (%): Conveyors Retrofit/Plant Cost (%): Substation Retrofit/Plant Cost (%):	1500 1 0.5 1 1	Water Availability Add NERC Subregion Central MISO Gateway Delta	solity CAPEX Adders ers by NERC Subregion Cost Increase (%) 5 5 5 5 5
Use Alternative Cost Structure Alternative Cost Structure Alternative Cost Structure Total CAPEX (%): Total CAPEX				Use Alternative Parasitic Load Alternative Parasitic Load Parasitic Load (%): 100		SE ERCOT FRCC MRO	5 5 5 5
Component Cost Modifiers — Letdown Turbine CAPEX (%): Separation and Compression (Scrubbers and Absorbers CAP Additional Cooling CAPEX (%): Additional Primary FGD CAPE Additional SOX Polishing CAP Additional NOX CAPEX (%):	CAPEX (%): : : : : : : : : : : : : : : : : : :	() () () () () () () () () () () () () (NPCC - ISO NE NPCC - NY SERC - VACAR SPP - Northern SPP - Southern WSCC - AZNMSNV WSCC - CA WSCC - NWPP	5 5 5 5 5 5 5 5 5
						WSCC - RMPA	5

<u>- 🗆 ×</u>

GCM Phase II

Main Adders and Alternative Cost Structure

Scenario: ≥ 400 MW Unit Sample

- A model run was performed on the sample of units with a generation capacity of 400 MW and above
- Scenario CAPEX

Construction Cost Adders

Cumulative Structure Conflict Cost Adder Distribution

Scenario Carbon Capture and Storage Cost

Nameplate Capacity (MW)

≥ 400 MW Unit Sample

Scenario Incremental LCOE

235 GW (347 Units)

≥ 400 MW Unit Sample

Benefits/Uses

- Tailor analyses to examine an operator's portfolio of plants as a screening tool to assess the viability of retrofit
- Analyze electric generation/carbon-mitigation scenarios in a possible carbon-constrained world
 - Cumulative frequency cost/supply curves
 - Alternative CO₂ allowances
- Assess the costs of individual units and their components, including air emissions equipment
- Assess different alternative technology/situations for carbon capture and storage scenarios
- Model CFPP emission compliance costs relative to EPA Air Transport rule
- The Phase I Report can be found at: <u>http://www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View&Source=Main&PubId=289</u>

Enegis, LLC 3959 Pender Dr. Suite 300 Fairfax, VA 22030 phone: (703) 861.4189 fax: (703) 738.7022 email: JEppink@Enegis.com www.Enegis.com

This work was funded by the U.S. Department of Energy's National Energy Technology Laboratory (U.S. DOE/NETL) under Contract No. DE-AC26-05NT41816. The NETL sponsors for this project, Phil Dipietro, Chuck Zelek, Chris Nichols, Lisa Phares, provided guidance and technical oversight for this study. The authors gratefully acknowledge the significant role played by U.S. DOE/NETL in providing the programmatic guidance and review of this study.

