SIEMENS

Environmental Systems & Services Business Model

Provide One Stop Combustion/Gas Path Optimization, Equipment and Service

Environmental Systems & Services Expanded Products for Global Markets

SIEMENS

- Carbon Capture Technology (CC)
 - Siemens PostCap Process
- Flue Gas Desulfurization (FGD)
 - Dry FGD
 - Mercury Control
 - Wet FGD
 - Wet ESP
- Electrostatic Precipitators (ESP)
 - HaRDE
 - VIGR
- Fabric Filters (FF)
 - Pulse Jet
 - Cartridge
 - Reverse Air
- NO_x and Ancillary Products
 - Low NO_X Burners
 - Overfire Air
 - SNCR/SCR
 - Boiler Design Upgrades

Environmental Technology Update Post Combustion Air Pollution Control

Siemens Preferred Solutions for CO₂ Capture

IGCC / Pre-Combustion Carbon Capture

- Gasification technology with multi-fuel capability for new power plants
- Technology "ready for implementation"
- Alternative route for chemical / fuel production, hydrogen economy

Oxyfuel Combustion Burners

Siemens Fuel Gasifier

Siemens IGCC in Puertollano (E)

Post-Combustion Carbon Capture

- Scalable market introduction, Slipstream Demo plants will minimize scale up risk in process trains
- Enhancement potential for solvents, scrubbing process and for integration into the power plants
- For retrofit and new fossil fired power plants
- Siemens process based on amino acid salt formulations

Siemens scrubbing process test lab

Post-Combustion carbon capture plant design

Siemens Solutions Available for Implementation in CCS Demonstration Projects

Amino Acid Salt (Environmentally Safe) is the Basis of our Process

Ammonia

MEA

Amino acid

Amino acid salt

Chemically stable

Naturally present

Salts have no vapor pressure

- No thermodynamic solvent emissions
- Not flammable
- Not explosive
- Odorless
- No inhalation risk

Negative ion is less sensitive to O₂

Low degradation

Amino acids are naturally present

- Biodegradable
- Nontoxic
- Environmentally friendly

Solvents based on amino acid salts are economic, have low environmental impact and are easy to handle

Siemens Post-Combustion Capture Process Current Status

The efficiency is \sim 8,5 %- pts. lower than the reference hard-coal fired power plant, CO $_2$ compression (200 bar) included

European POSTCAP Projects

E.On Staudinger Pilot Plant, Online Sept-09

Specifications

- 0.1 MWe scale
- Industrial packing
- Standard process layout

Results

- Long-term experience
 - Stability, Emissions, Corrosion
- Operating parameters
 - Start-up, Part load
 - Exceeding 90% Capture
- Further model validation

Fortum Meri-Pori Demonstration Plant, **Online 2015**

- 565 MW Plant in Finland
- Specification for CO₂ Capture on 50% of Plant Capacity
 - FEED Study culminating priced proposal
 - Full EPC contract
- Evaluated 7 Post-Combustion and 3 Oxyfuel **Providers**
 - Included both Ammonia and Amine based post combustion technologies
 - 3 Suppliers included in the short list for final negotiations
 - Fortum partnered with Siemens POSTCAP Technology exclusively in June 2009
- Current Schedule: begin FEED in June 2010

Most critical step: Validation of the process under real flue gas conditions

Carbon Capture Pilot Plant at E.ON SPP, Staudinger", SIEMENS Pilot to Demo plant

Fortum and Teollisuuden Voima (TVO) plan to retro-fit Meri-Pori 565 MW coal-fired power plant

- 50% Slip stream
- Aim to reduce CO₂ emissions by ~1,25 million tons/a, as well as NOx and SOx emissions
- Siemens Post-Combustion Technology selected
- CO₂ will be captured in Meri-Pori,
 transported abroad for storage and
 sequestered in geological formations
- FINCAP commissioning 2015

POSTCAP – U.S. Pilot Applications

DOE CCS Tech Solicitation

- Applications submitted in last round
 - Approx 1 MWe Pilot
- Planned DOE Awards

- Bench Scale: 3 - 8

– Slipstream:

- Award Timing
 - Summer 2010
- Performance Period (years)

Bench Scale: Up to 3

Slipstream: Up to 4

GenPower Longview Facility CCS 375 MW Demo Unit

- Siemens selected by GenPower to conduct a Feasibility Study
 - Completed March 2010
- New 695 MW supercritical pulverized coal power plant
 - Maidsville, WV
- SESS supplying state-of-the-art pollution control system
- Ready to build on the study with government incentives to capture 90% CO₂ from 50% of the Unit

CO₂ Compression Integration

Siemens CCS Compression Module

- Intercooled gear-type compressor
- Dedicated cooler for changing CO₂
 fluid density
- Pump or high density compressor

Heat Recovery Impacts

- Compressor Design
- Rotor Dynamics
- Material Selection

CO₂ compressor development coordinated with CO₂ capture process development and Power Plant Integration for optimal solution

Post-Combustion for Combined Cycle Power Plant

Main driver for Natural Gas CCS

- EU legislation calls for capture ready feature for new plants with an output > 300 Mw_{el}
- Enhanced Oil Recovery (EOR)

Post-Combustion Development Challenges

- Low CO₂ concentration in flue gas (3.8v-%)
- High oxygen content in flue gas (12.6v-%)
- High flue gas flow rate
- Operation with frequent load changes
- Little integration options for low temperature heat from the capture plant

Siemens pursues the development of a dedicated capture process for combined cycle power plants

SIEMENS

Page 15 **USEA - 26 May 2010**