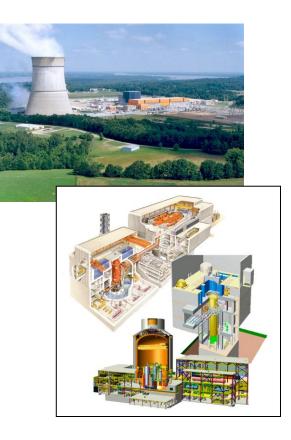


Nuclear Infrastructure Support

presentation to US Energy Association Panel

Rebecca Smith-Kevern, Director for Light Water Reactor Technology


November 9, 2010

Activities in Infrastructure Development

Nuclear Energy

- Three studies on nuclear infrastructure conducted:
 - "U.S. Job Creation Due to Nuclear Power Resurgence in the United States," November 2004
 - "DOE NP2010 Nuclear Power Plant Construction Infrastructure Assessment," October 2005
 - "Viability of Developing a U.S. Domestic Source for Large Forgings for Nuclear Power Plants," March 2010
- Research support to the Nuclear Fabrication Consortium
- Advanced Methods for Manufacturing being launched
- Government Support for Nuclear Education
 - DOE Nuclear Energy University Program
 - Nuclear Regulatory Commission Education Program

"U.S. Job Creation Due to Nuclear Power Resurgence in the United States"

- 2004 INEEL Report on Job creation:
 - Determined the potential impact on the number of manufacturing jobs in the US resulting from new construction
 - Assumed the need for and additional 355 GWe of electricity by 2020 with 50 GWe coming from new nuclear generation capacity
 - Construction of the first unit was assumed to begin in 2009
 - Results from the model show that approx. 610,000 jobs would be added to the U.S. economy by:
 - Repatriating 37,000 to 38,000 nuclear manufacturing jobs,
 - Adding 72,00 to 79,000 plant construction and operating jobs.
 - Adding another 181,000 to 250,000 Indirect jobs in the nuclear power industry
 - Inducing an additional 218,000 to 242,000 jobs in the non-nuclear industries throughout the country

"DOE NP2010 Nuclear Power Plant Construction Infrastructure Assessment"

Nuclear Energy

2005 MPR Associates report on the adequacy of construction infrastructure concluded:

- Manufacturing and fabrication, labor, and construction equipment infrastructure is adequate for up to 8 nuclear units through 2017
- Several areas are limited and there are some open issues related to codes and standards
 - Digital Plant Control System and Plant Simulators
 - Reactor Pressure Vessel Nuclear-Grade Large Ring Forgings
 - Qualified Personnel (boilermakers, pipefitters, electricians, and ironworkers in short supply)
- Recommended Action Plan
 - NRC should modify their procedures for design, review and approval of digital control systems
 - NSSS vendors and EPC contractors should complete plant design (ex. Routing of small bore piping, tubing and conduit)
 - EPC contractors should negotiate and sign a national labor agreement with major labor unions
 - NRC, Utilities, NSSS vendors and component and material suppliers, and EPC contractors should ensure that appropriate QA and QC program are in place
 - Nuclear Power Operators should recruit and train health physicists, operators, and maintenance technicians at current plants to serve as replacements at future plants

"Viability of Developing a U.S. Domestic Source for Large Forgings for Nuclear Power Plants – A Cost/Benefit Study"

Published in March 2010, the MPR study found:

- Including Japan Steel Works, there are several forging facilities internationally (France, Russia, China, and Korea)
- Their combined capability exceeds demand even under best case conditions through 2030
- US demand ranges from 10 to 50 reactors by 2030
- Excess capacity in 2030 is projected at 4 to 16 reactor vessel sets
- No evidence of real plans by any major suppliers or NSSS vendors to establish an ultra-large forging facility in the US.
 - Cost for new facility is about \$2 billion
 - Would take about 7 years to build
- Some interest by existing small-scale forging suppliers (Elwood City, Jorgensen, Forging, Lehigh Heavy Forge and ArcelorMittal Steel) but they would need substantial government support.

"Viability of Developing a U.S. Domestic Source for Large Forgings for Nuclear Power Plants" *Continued...*

Report Conclusions

- No favorable benefit to support industry at this time as international suppliers would take market share before a US facility is completed
- Targeting smaller forging market is consistent with potential shift in US nuclear power design focus
- Encourage industry to focus on forging special materials like stainless steels, special corrosion resistant alloys for non-water coolants, and high strength or high temperature alloys

Nuclear Fabrication Consortium R&D with Edison Welding Institute

- Help stimulate advanced fabrication approaches/technology
- Focus on advanced welding, inspection methods, modularization, and fabrication
 - Advanced non-destructive examination technology
 - Advanced welding processes
 - Laser Beam Welding
 - Electric Beam Welding
 - Hybrid Laser Arc Welding
 - Modularization and fabrication techniques
 - Ultrasonic machining
 - Real-time weld quality inspection
 - Field demonstration of advanced welding processes

Advanced Methods for Manufacturing (AMM)

Nuclear Energy

- Under Cross-cutting Technologies within the newly requested Nuclear Energy Enabling Technologies
- Focuses on fostering advanced manufacturing and fabrication technologies and the enhancement of construction methods and management techniques
 - Draws upon successful practices in the aircraft, and shipbuilding industries that could accelerate nuclear plant construction
 - Employs the modeling and simulation capabilities of the National Labs to validate and optimize new technologies.
 - Technologies or techniques pursed are independent of reactor type and are broadly applicable to the industry

Advanced Methods for Manufacturing Planned Accomplishments

Improving the quality and economics of equipment and component modules fabrication and manufacturing

FY 2011 Planned Achievements

- Initiate a detailed research roadmap effort that crosscuts key DOE programs and addresses technology risks associated with this program area
- Initiate competitively selected, peer-reviewed, high-potential R&D projects with universities, industry, and laboratories across a variety of manufacturing and fabrication technologies

Nuclear Energy University Program Mission and Program Objectives

- <u>IUP Mission</u> Provide scholarship and fellowship grants to support training of engineers and scientists in nuclear engineering, nonproliferation, nuclear forensics, and nuclear safeguards missions.
- IUP Objectives Sustain future workforce for nuclear renaissance and NE Research and Development (R&D) mission via collaboration between the Office of Nuclear Energy (NE), the National Nuclear Security Administration (NNSA), and the Nuclear Regulatory Commission (NRC). Avoid duplication of effort.
- NEUP Mission As part of NE R&D mission, engage U.S. university community to provide resources to conduct Program Directed, Program Supporting, and Mission Supporting R&D, related infrastructure improvements, and student fellowship/scholarship grants supporting university-based nuclear science and engineering research.
- NEUP Objectives Support the NE R&D Roadmap objectives while bolstering university R&D infrastructure, especially research reactors.

NE Funding for Universities

Nuclear Energy

- More than 20% of the NE R&D budget will be used to support university-based activities
- Up to 20% of the NE R&D budget is allocated to the peer-reviewed NEUP
 - Support for infrastructure, students, and research and development are all components of the NEUP scope
 - All on-going and new University-supported activities directly funded by DOE-NE will be included in NEUP (M and S Hub program is the one exception)
- Other NE University Investments Outside NEUP
 - NE funds fuel management support for University-based Research Reactors
 - National Laboratories use NE R&D funds to support specific R&D or support efforts at universities

NRC Education Grant Programs

Nuclear Energy

Curriculum Development (\$5M)

- Supports courses, studies, training, curricula, and disciplines pertaining to nuclear safety, nuclear security, nuclear environmental protection, and other fields that the Commission determines to be critical to NRC's regulatory mission
- ~\$200,000 over 2 years
- Other Programs (\$15M)
 - <u>Scholarships</u> 2 years, \$10,000 per student per year, awarded to institution (\$200,000)
 - <u>Fellowships</u> 4 years, \$50,000 per student per year, awarded to institution (\$400,000)
 - <u>Faculty Development</u> 3 years, \$150,000 per year plus institution match (\$450,000 + \$150,000)
 - <u>Trade schools/community colleges</u> 1 year, \$10,000 per student (\$150,000)