

U.S. Biomass Supply for Power & Environmental Implications

Steven Rose

Global Climate Change Group, EPRI

with Bruce McCarl (Texas A&M University) and Greg Latta (Oregon State University)

United States Energy Association, Washington, DC

June 23, 2011

Key Questions

- How much biomass is available to the electric sector?
- Are there (supply-side) environmental implications?
 - For land-use?
 - For greenhouse gases?
 - For water?
- [Are there biofuel production implications?]

Public Context

Evaluation of fuel feedstock and generation options

Complex bioenergy policy environment

- "Renewable" electricity
- CAA Tailoring Rule and bioelectricity emissions
- Climate change legislative proposals
- Renewable fuels standard

Sensitive public issues

- Climate change concern
- Energy security
- Life-cycle GHG emissions
- Forest land loss
- Farm and forest sector income
- Food security
- Soils and water

How much biomass is available to the electric sector?

Approach

- Dynamic modeling of U.S. agriculture & forestry production & markets, including land-use allocation decisions
 - Simultaneous modeling of agriculture and forestry bioenergy feedstocks and end-uses – captures competition, complementarities, & co-products
- Sub-national resolution and international trade
- GHG accounting and abatement
- Policy baseline: EISA renewable fuels mandate imposed, Conservation Reserve Program (>30 mill acres)
- → Estimating biomass supply for electricity (delivered to power plant gates) accounting for food, feed, and biofuel demands & production

Biomass Feedstocks, Costs, GHG Value in the Modeling

~ 45 feedstocks	Ethanol	Cellulosic ethanol	Biodiesel	Bioelectricity
Starch- & Sugar-Based Crops	X			
Crop Residues		X		X
Energy Crops		X		X
Pulpwood		X		X
Logging Residues		X		X
Processing Residues		X		X
Oils & Fats			X	

- Relative value of a feedstock a function of...
 - Direct costs (harvesting, transportation, storage, processing)
 - Opportunity costs (commodity & GHG)
 - HHV
 - Moisture content
 - Energy prices
 - Co-products (e.g., oil, feed substitutes)
 - Direct GHG benefit if valued (e.g, ethanol vs. gasoline)
 - Net GHG effect if valued

Largest Supplies in Midwest, South, Plains

Our U.S. Estimate Over 50% Less than EIA's

Part of the Difference – Storage & Transportation to Existing Generation

Another issue – GHG Incentives Can Increase Delivered Cost (e.g., \$30/tCO₂e + 5% per year)

Are there (supply-side) environmental implications?

Nationally, Forest & Cropland Expand with **Pasture Conversion as Bioelectricity Increases**

Nationally, Forest & Cropland Expand with **Pasture Conversion as Bioelectricity Increases**

Direct GHG Offset of Fossil Fuels – GHG Beneficial but Not Neutral

Percent of fossil emissions offset per unit energy (e.g., Southeast)

	100% bioelectricity
Corn	
Corn residue	97%
Softwood pulp	98%
Softwood harvest residue	98%
Softwood mill residue	99%
Switchgrass	92%

<u>Included</u>: production, hauling, processing fertilizer manufacture, feedstock conversion, and byproduct credit GHG emissions and carbon sequestration

Not included: land conversion and land management change GHGs (next slide)

Indirect US Landscape GHG Changes – Driven by Forest Adjustments

Change in cumulative emissions w/ \$9 vs. \$1/MMBtu demand

Net GHG Implications (US Direct + Indirect)

Change in cumulative emissions w/ \$9 vs. \$1/MMBtu demand

Net GHG Implications (US Direct + Indirect)

Change in cumulative emissions w/ \$9 vs. \$1/MMBtu demand

National Water and Nitrogen Implications with Increased Biomass Demand

Changes by 2030 with \$9 vs \$1/MMBtu demand

Are there biofuel production implications?

Ethanol Implications

Summary and Concluding Remarks

 Detailed economic modeling of U.S. agriculture & forestry markets, including multiple bioenergy feedstocks and land-use

Insights

- Cost of biomass feedstocks for generation far from straightforward and more expensive than previously estimated
- Variation in feedstocks & regional supply will be important
- Bioelectricity can...
 - Yield net gains in forest acreage
 - Out-compete biofuels on a GHG basis (per unit energy)
 - Be net GHG beneficial in the U.S.
- Biofuels market likely affected
- Biomass end-use allocation and electricity penetration will depend on performance, cost, technology options, and policy

Thank you!

Steven Rose, Ph.D.
Senior Research Economist
Global Climate Change Research Group
EPRI
+1 (202) 293-6183
srose@epri.com