Regional Workshop on Clean Energy Development strategies in East Africa

July 16-18, 2012 Arusha, Tanzania Fouad Dagher National Grid

Renewable Energy Sources

Transmission Build-out is a Benefits

- power from remote renewable generation to load centers far away
- help create jobs
- spur economic growth
- achieve the mandated renewable portfolio standard
- significant environmental benefits

nationalgrid Cape Wind: first off shore wind farm in the US

- Off the coast of Massachusetts
- 130 Wind Turbines
- The towers are 79 m tall
- highest blade tip height will be 134 m above water
- Maximum production 454 MW
- Average production 174 MW
- Projected cost \$2.5 B
- Projected saving \$7.5 B over 25 years
- Power sold thru PPA

National Grid's Renewable Technology

Six Photovoltaic Sites

- Dorchester
 - 1250kW nameplate
 - 575 MWh to date
- Everett
 - 605kW nameplate
 - 1049 MWh to date
- Haverhill
 - 1016 kW nameplate
 - 1736 MWh to date
- Revere
 - 750 kW nameplate
 - 1272 MWh to date
- Sutton
 - 983 kW nameplate
 - 2315 MWh to date
- Waltham
 - 225 kW nameplate
 - 775 MWh to date

Total PV Capacity: 4829 kW Total Production to Date: 7722 MWh

Renewable Energy Credits (RECs)

- RECs are another opportunity for renewable plants to create income
- A REC is attained for each MWh produced by a renewable energy
 - Want to increase plant efficiency and decrease power consumption
- Companies create renewable portfolios
 - Some states mandate Renewable Portfolio Standards (RPS)

Hurdles for Renewable on Transmission Lines

- Interconnection costs
- Siting
- Intermittency
- Available resources (land, wind corridor)
- overlapping state, regional, and federal policies at play in siting new transmission to facilitate the growth of renewable energy
- Objections include charges that new construction obstructs views, reduces property values, and could harm endangered species and habitats.

Renewable Generation vs. Demand

- How do renewable match with demand?
 - Solar seems to be the best fit but still not perfect
 - Wind is much less predictable
 - For large scale integration storage is necessary

Volatility of Solar

Renewable's Effects on the Grid

Slow Transients

- Created by passing clouds
- These transients (in the order of seconds) can cause voltage swings on the feeder
 - Electric Power Research Institute (EPRI)
 - Found that they were not significant (1991)
 - However, PV arrays were also distributed
 - 30 houses with 2kW nameplate for 60kW total nameplate

Renewable's Effects on the Grid

- Islanding
 - When the grid has no power on it but the renewable continues to transmit power
 - Creates unsafe work conditions for linesmen

Capacity Factor

(MWh of energy produced in a set timeframe)

 $\mathcal{E}apacity \ Factor(CF) = \frac{(HAW \ CF)^{2} \ (Hours \ in \ the \ set \ timeframe) * (Nameplate \ capacity \ in \ MW)}{(Hours \ in \ the \ set \ timeframe) * (Nameplate \ capacity \ in \ MW)}$

Capacity Factor vs. System Efficiency

- The two values are not related or dependent on each other
- Efficiency represents losses of energy in the system
 - Should be accounted for in the nameplate capacity
- CF is the percentage of generation capacity potential used on average
 - Usually due to environmental conditions not being ideal but can account for maintenance

Possible Solutions

Energy Storage

Energy Storage - Smoothing

Stores during high power outputs and supplies during valleys

- Batteries can quickly change the direction of their power flow
- Requires prediction or simulation in order to size battery correctly

4/24/2012 Minute Resolution Solar Output from Everett

Energy Storage – Peak Shaving

Store energy during off hours and supply during peaks

Energy Storage – Capital Deferment

- Adding new loads to a feeder can overload lines
 - Energy storage charges during the night (under loaded lines)
 - Discharges during peak further down the feeder
 - Eliminates the need to reinforce with higher capacity cables

The Power Grid of the Future

America's Energy Future: A Smart Grid City

Plug-in Hybrid Vehicles – Plug-in hybrid vehicles can store energy in their batteries. When connected to the distribution grid, plug-in hybrid vehicles can serve as an additional source of energy, providing power back to the grid during times of peak demand. Sensors – Advanced communication equipment on the grid, including sensors, enable utilities to monitor, identify and quickly correct problems. Increased reliability of power is the result.

Traditional Generation

 Over time, traditional generation assets such as coal-fired generation plants will be offset by renewable energy sources in providing energy to the distribution grid.

Renewables – Renewable energy sources, such as wind turbines and solar panels, are more readily integrated into the smart distribution grid compared to a traditional power grid.

Smart House – A Smart House tracks usage information through smart meters installed in the home. Customers will have a variety of options through which they can interface with to learn about the most cost-efficient energy usage patterns. Increased information empowers consumers to reduce their energy use.

National Grid Smart Grid Pilot Proposal Worcester, Massachusetts

> nationalgrid The power of action.