NET Power

Truly Clean, Cheaper Energy

May 2016

The size of the prize

The only technology that will enable the world to meet the COP 21 climate targets *without* having to pay more for electricity.

NET Power is a truly novel approach

• NET Power makes electricity from natural gas

- NET Power costs the same as, or less than, electricity from existing natural gas power plants
- NET Power generates electricity at **high efficiency** (59% LHV)
- NET Power will capture substantially all of the CO₂ and non-CO₂ atmospheric emissions without any additional cost
 - The CO₂ is captured at pipeline purity and pressure ready for use in other industrial applications and EOR
 - NET Power increases margins per BOE extracted via EOR by reducing injectant, gas processing and re-injection energy costs.
- NET Power does not need to use water (at a small reduction in efficiency)

NET Power readiness

Every single item of equipment is commercially available, except the turbine

The turbine is in an advanced state of readiness

- It is being engineered, designed and manufactured by Toshiba.
- The blades, stages and pressure shells are not new.
- Only the combustor is new.
- A 5MWt test combustor has been operating since January 2013.

Technology Overview

The Supercritical CO₂ Allam Cycle

NET Power is based on the Allam Cycle platform

The NET Power advantage - the Allam Cycle

The supercritical CO₂ Allam Cycle is simple

- Historically, CO₂ capture has been expensive, whether using air to combust or oxy-combustion
 - Air combustion
 - $\underbrace{8N_2 + 2O_2}_{air} + CH_4 \rightarrow \underbrace{8N_2 + CO_2}_{expensive to} + 2H_2O$
 - Oxy-combustion
 - $20_2 + CH_4 \rightarrow CO_2 + 2H_2O$ expensive to produce
- The Allam Cycle makes oxycombustion economic by:
 - Relying on a more efficient core power cycle
 - Recycling heat within the system to reduce O₂ and CH₄ consumption, and associated costs of the ASU

NET Power is competitive without CO₂ sales

- LCOE calculated using EPRI methodology
- Assumes natural gas at \$2.85/MMBTU and coal at \$1.73/MMBTU
- Every move of \$1 in natural gas moves LCOE \$6
- Cost ranges represent range of data combined from: EIA (2013), Parsons Brinkerhoff (2013); Black & Veatch (2012); DOE NETL (2012)

NET Power's Development Program

Performance and Economics Overview

Development pathway

- Thermodynamic modelling
- Costing
- Program development

- 295MWe commercial plant pre-FEED
- 50MWth demonstration plant FEED
- 5MWth combustor testing
- 50MWth demonstration construction and testing
- 295MWe commercial development

295MWe commercial construction and operation

Current Stage

Construction is underway on NET Power's 50MW demonstration plant

• 50MWth natural gas demonstration plant

- Plant design scaled down from 500MWth pre-FEED design to ensure scalability
- Site is in La Porte, TX

TETPOWER

- Plant includes all core components of the Allam Cycle
- Combustor/turbine, heat exchangers, pumps and compressors, control system, and ancillary equipment
- Plant will undergo full performance evaluation (startup, shutdown, ramping, hot/warm/cold starts, emergency operations)
- Oxygen will be pulled from a pipeline as opposed to a dedicated ASU
- CO2 will be generated at high pressure and quality
- \$140 million program
 - Includes first of a kind engineering, all construction, and testing period

Commercial plant characteristics

Large amount of operational flexibility

- Electrical turndown not limited by air permit constraints
- Enables rapid responsiveness to load requirements
- Ramp-rate
 - Cold (after being down for 36 hours): 3 to 4 hours
 - Warm/hot (being down less than 12 hours): 2-5% per minute from warm/hot start

• Large amount of siting flexibility

- Ability to cool with hybrid or air cooling configurations, eliminating water needs (no make-up water required), with minimal (2-3%) efficiency impact
- Simplified configuration capable of using alternative water resources (non-potable and/or brackish)
- Elimination of air emissions enables siting in nonattainment zones without requiring purchase of offsets
- Maintains performance (no major de-rating) in low air density locations (hot ambient temps/high altitudes)
- Flexible with small contaminants in fuel gas chemistry

NET Power Commercial Natural Gas Plant

Electric Output	295MW		
CO ₂ Output	804,000 ton/year at 120 bar pressure		
N ₂ Output	4.2 MM ton/year		
ASU Output Demand	3,500 ton/day		
Site Area	13 acres		

Commercial marketing

- Commercial power customers are already engaged
 - In commercial discussions with many of the largest power generators in US an internationally.
 - Planned natural gas capacity additions by this group of customers is equal to, conservatively, 50 NET Power 2-train power stations.
- Commercial-scale pre-FEED completed
 - Moving into plant FEED stage.
- Major and minor oil and gas EOR companies interested in CO₂ off-take
 - NET Power enhances their economics and provides much needed CO₂ supply.

- Potential regulatory opportunity in US
 - New CO₂ regulations enhance NET Power's market position.
 - NET Power provides customers with certainty in the face of changing and increasingly stringent regulations.

NET Power's Benefits

Performance and Economics Overview

NET Power plants are highly efficient

• Competes with or exceeds combined cycle efficiency, while eliminating air emissions.

NE	T Power and Co				
	HHV		LHV		
Energy Components	F-Class US NGCC Plant (0% CC)*	NET Power NG Plant (100% CC)	F-Class US NGCC Plant (0% CC)*	NET Power NG Plant (100% CC)	
Gross Turbine Output	51.06%	74.65%	58.7%	82.7%	
CO ₂ Compressor Power	(Compressors mechanically coupled)	-10.47%	mechanically coupled)	-11.6%	Parasitic Load Provides Opportunity for
Plant Parasitic Auxiliary Power	-0.86%	-11.01%	-1.2%	-12.2%	Efficiency Improvement
Net Efficiency	50.20%	53.17%	57.5%	58.9%	NG Compressor 8.2%

*Performance data from NETL Cost and Performance Baseline Report, 2013.

NET Power's low cost-of-capture solves the CO₂ utilization and storage problem

CO₂ capture

- at no extra cost
- already at pressure (available from 30 bar/450 psi to 300 bar/4500 psi)
- already at high purity

Scalable CO₂ uses

- Enhanced oil recovery (EOR)
 - Cheaper than geologic CO₂ (no associated lifting costs, mineral lease costs or pressurization costs)
 - Current CO₂ use in US would by matched by the CO₂ output from over 110 Allam Cycle turbines (500 MWth)
 - Industry is drastically under-supplied with affordable CO₂
- Additional CO₂ utilization opportunities
 - Building materials
 - Chemical processes
 - Artificial photosynthesis

NET Power can build upon the large CO₂-EOR infrastructure already in place

NET Power can deliver significant economic and geographic growth in lower oil prices via EOR

- Shutdown of tight oil/high cost plays highlights EOR as a low-cost opportunity for growth from existing fields
- NET Power further improves the economics of EOR and will significantly expand CO₂ supplies for producers

NETPOWER

NET Power provides growth opportunities to industries outside of electricity generation

Key gases

- Synergistic with chemicals and oil & gas industries
- For each turbine train (operating at an estimated 85% capacity factor for power, 98% for ASU)
 - 13.9 million MMBTU per year NG use
 - 800,000 tons per year CO₂ production
 - 4.8 MM tons per year N₂ production
 - 166,000 tons per year O₂ production (during planned outages for electricity part of plant)
- Capability of delivering syngas (H₂ and CO)

Significant flexibility to site where resources exist

- Option for zero water usage
- Insensitive to changes in ambient conditions (altitude, temperature, etc.)
- Reduces the CO₂ intensity of the oil & gas industry
 - Can utilize flare and waste gases (associated, acid, sour) that are otherwise environmentally harmful
 - Can Integrate directly with operations of oil and gas producers
 - Simplifies operations and reduces costs
 - Integration with LNG-regasification terminals provides high efficiency power generation (67% LHV) and eliminates the need for gas-fired regasification

Appendix

EOR, EPA, and Carbon Capture

The NET Power advantage summarized

Low-Cost

- Utilizes abundant, low-cost natural gas
- Produces

 electricity that is

 equal to, or less
 than, NGCC's cost
 of electricity
- No additional cost for CO₂ capture

De-risk fleet

- Near-100% capture of all carbon emissions (>97%)
- No other air emissions, including NO_x
- Water usage can be eliminated

Reliable

- Less sensitive to changes in siting conditions (high altitude and temp)
- Reactive power and maintaining voltage, frequency, & stability
- Capable of full electrical turndown without emissions issues, enabling fast response

The Allam Cycle provides a flexible platform with broad applications

NET Power's commercial plant is much smaller and simpler than previous carbon capture projects

24

Material Confidential and/or Proprietary to 8 Rivers Capital and/or NET Power – Not To Be Disclosed or Republished Without Written Consent

NET Power transforms U.S. EOR and CO₂ storage potential

CO₂ demand far outstrips supply

• As current geologic supply drops, the gap will grow wider.

NET Power produces the lowest-cost CO₂

• The Allam Cycle can produce pipeline CO₂ at a cost lower than any existing source, including geologic, which is currently the lowest cost, and by far the most common, source of CO₂ for EOR.

NET Power will have a major supply impact

 57 commercial NET Power Allam Cycle plants would match the entire combined geologic CO₂ supply of the 3 largest US EOR operators (OXY, Kinder, Denbury).

NET Power untethers EOR from the current geologic CO₂ supply network

• NET Power-based CO₂ hubs enable utilization of EOR assets isolated from the geologic CO₂ network and justify a major expansion of CO₂ supply network.

Material Confidential and/or Proprietary to 8 Rivers Capital and/or NET Power – Not To Be Disclosed or Republished Without Written Consent

NET Power Allows the CO₂ Pipeline Network to Grow Rapidly

Low-Cost CO₂ production would support a massive network expansion

Approximately 7 NET Power 590 MWe stations would produce enough low-cost CO₂ to justify the development of an 800 mile CO₂ pipeline.

26

CO2 sequestration can generate revenue with EOR and ECBMR

ECBMR: Enhanced Coal Bed Methane Recovery. Injection of CO_2 into coal seams than cannot be mined. CO_2 is sequestered and CH_4 is produced.

EOR: Enhanced Oil Recovery. CO₂ is injected into mature oil wells to stimulate additional oil production.

	Gross Fossil Capacity	Fraction of Gross Build That Would Be Justified by EOR Demand*	Fraction of Gross Build That Would Be Justified	500MWt/295MWe Trains justified by EOR and ECBM demand for CO ₂	
	Builds to 2035 (IEA)		by ECBM Demand*	Total	10% market share
Europe	213 GW	67%	72%	722	72
Former Soviet Union	262 GW	299%	313%	888	89
Asia Pacific/Oceana	1408 GW	9%	226%	4,773	477
Middle East	185 GW	1091%	197%	627	63
Latin America	96 GW	334%	123%	325	33
United States and Canada	239 GW	254%	603%	810	81
Total	2,403 GW			8,146	815

*A value greater than 100% indicates that EOR/ECBM demands exceed CO2 supply from gross capacity builds between now and 2035. Sources: Godec et al. Potential global implications of gas production from shales and coal for geological CO2 storage. Energy Procedia. GHGT-11 (2013)

Kuuskraa,, A., et. al. "CO2 Utilization from "Next Generation" CO2 Enhanced Oil Recovery Technology," GHGT-11, 2013)

NET Power

+1 (919) 667-1800

www.NETPower.com / www.8Rivers.com