

Turning CO₂ into Fuels and Chemicals for Sustainable Energy Development

Chunshan Song*

Pennsylvania State University EMS Energy Institute, Dept of Energy & Mineral Eng, and Dept of Chemical Eng, University Park, PA 16802 *E-mail: csong@psu.edu

> US Energy Association Briefing Washington DC, April 21, 2016

CO₂ Emissions Worldwide

World CO₂ emissions projected to rise from 28.18 billion metric tons (BMT) in 2005 to 35.21 BMT in 2020 and 43.22 BMT in 2035 (by EIA IEO, 2011).*

2013 world's total CO₂ emissions 35.1 BMT, with 9.5 BMT in China (7.1 MT per person), 5.9 BMT in US (18.9 MT pp), 1.8 BMT in India, 1.7 BMT in Russia, and 1.4 BMT in Japan.

http://www.columbia.edu/~mhs119/UpdatedFigures/

COP21 - CO₂ Control 2 Degree C Scenario

Charting the Paris Climate Pledges

To stave off potentially cataclysmic effects of climate change, the world must keep global warming under 2 degrees Celsius. The climate pledges that countries have submitted so far would reduce emissions enough to hold warming to 3.5 degrees C.

PAUL HORN / InsideClimate News

GLOBAL GREENHOUSE GAS EMISSIONS*

NAVEENA SADASIVAM, INSIDECLIMATE NEWS, OCT 6, 2015

HTTP://INSIDECLIMATENEWS.ORG/NEWS/051 02015/CLIMATE-TREATY-FORECAST-CLOUDY-CHANCE-DISASTER-UNITED-NATIONS-PLEDGE-GLOBAL-WARMING

SOURCES: Climate Interactive

Global Energy Mix: Carbon-Based

Global energy mix

Energy sources in world total primary energy supply, share in %, 2013

http://www.oecd.org/environment/cop21-climate-change-in-figures.htm

Global Energy Challenges in the 21st Century*

- 1. Supply clean fuels, electricity and water to meet the growing energy demand worldwide with declining amounts and qualities of resources.
- 2. Increase efficiency by overcoming the limits of existing "wasteful" fossil energy systems (prod, conv, storage, transport, utilization).
- 3. Eliminate environmental pollutants due to energy utilization; reduce greenhouse gas (CO_2) emissions.
- 4. Sustainable energy development involving more of renewable sources (also involves CO₂).
- 5. Sustainable organic material development involving carbon-based skeletons (incl CO₂).

* C.S. Song. Catalysis Today, 2006, 115, 2–32

Energy-Environment Problems

"Energy is the hardest part of the environment problem; environment is the hardest part of the energy problem; and resolving the energy-economy-environment dilemma is the hardest part of the challenge of sustainable well-being for industrial and developing countries alike."*

*John P. Holdren, Science, 2008, 319, 424-434.

GHG & CO₂ Control Related to Energy Utilization*

Advantages of CO₂ Conversion to Fuels, Chemicals and Materials

- CO₂ can be used as a raw material to make fuels, chemicals, and materials that are currently produced using oil, gas and coal.
- CO₂ conversion with renewable energy can effectively minimize CO₂ emissions, while producing clean and alternative fuels, chemicals and materials without using fossil carbon resources.
- This decreases the consumption of fossil resources, and avoids the CO₂ emissions and minimize environmental impacts from the portions of fossil fuels displaced.

Time to Begin Exploring a New Supply Chain Using CO₂

- Capturing and recycling CO₂ to chemicals and fuels can make an effective use of plentiful carbon resource and reduce GHG emissions.
- CO₂ conversion to chemicals and fuels can also reduce, and even replace, the fossil resources consumed for the same purposes.

Solution is a state of the s

CO₂ Capture H₂ Supply CO₂+H₂ Conversion Product Supply

How to Lower Cost of CO2 Capture from Flue Gas?

Problems in Conventional CO₂ Capture: Energy-Consuming Parts of CO₂ Amine Scrubbing

* N. Asprion, BASF, DECHEMA Workshop on CO2, Jan 21-22, 2008

CO2 "Molecular Basket" Sorbent (MBS) Concept*

Polyethylenimine (PEI)

Immobilize PEI in Nanoporous Mat

*X.L. Ma, X. Wang, C.S. Song, J. Am. Chem. Soc. 2009, 131, 5777.
* X. Xu, C. Song et al., Micropor Mesopor Mater, 2003, 62, 29; Energy Fuel, 2002

- Large pore volume can store more CO₂
- Branched CO₂-philic sites
- Branched amine facilitate the desorption
- Synergic effect on capacity and kinetics between nanoporous support and PEI

Effect of Sorption Temp and Time on CO2-MBS* - 50 wt% PEI/SBA-15

*X. Wang, C.S. Song, Catalysis Today, 2012.

CO₂ Sorption Performance of MBS in Comparison with Commercial and State-of-the-Art Sorbents

Sorption Isotherm

Capacity of MBS-2*:	
140 mg-CO ₂ /g-S	
Factor	
MBS-2 > MBS-1	1.5
MBS-2 > MEA/DEA	2.1
$MBS-2 > SBA-HA^1$	1.5
$MBS-2 > ZIF-69^2$	4.0
MBS-3 ≈ MBS-2	1.0

*at 15 kPa of CO₂ partial pressure

 Hyperbranched aminosilica sorbent (SBA-HA) by Hicks et al, JACS 2008.
 Zeolitic imidazolate frameworks (ZIF-69) by Banerjee et al, Science 2008.

*X.L. Ma, X. Wang, C.S. Song, *J. Am. Chem. Soc*. 2009, 131, 5777.

Pilot Plant Study of CO₂-MBS

- Penn State and RTI teamed up for a pilot plant study of CO₂-MBS sorbent for CO₂ capture under DOE NETL support in 2015*.
- The study successfully demonstrated CO₂-MBS for CO₂ capture from gas mixtures in a bench scale fluidized transport plant.

*Funded by US DOE/NETL; pilot plant photo in Feb 2015.

Inventys - The VeloxoThermTM Process

The patented VeloxoThermTM process uses structured adsorbent in a rotary system, similar to rotary air heaters, is claimed to be a more economically viable approach for separating CO₂ from flue gas streams. The claimed capture cost is ~\$15/ton-CO2 capture.

HTTP://INVENTYSINC.COM/, 2015

H₂ Supply - from H₂O

Using renewable, fluctuating energy (solar, wind, geothermal, etc.)-derived electricity to produce H2 from water.

H2 production is also an effective way to store renewable energy via extracting H from H2O.

US DOE target for H2 production: 2011 price: \$4.10/kg H2 2015 target: \$3.00/kg H2 2020 target: \$2.00/kg H2

Cost factors for H2 production from PEM electrolyzer #Electricity price; Electrolyzer efficiency; System capital cost

Vision for the Future

- Capturing CO₂ and converting it with H₂ (H₂O) into fuels, chemicals, and materials using renewable energy, is an important path for sustainable development.
- This approach effectively uses a greenhouse gas to control greenhouse gas emissions while providing alternative supply of ultraclean carbon-based energy and significantly reducing consumption of fossil fuels thus minimizing negative environmental impacts.

Challenges for CO₂ Conv & Uilization*

Perceptions, Energy requirements of CO₂ chemical conversion (plus source & cost of H₂ and other co-reactants if involved).

Costs of CO₂ capture, separation, purification, and transportation to users.

 Market size limitations, lack of investmentincentives and industrial commitments for producing CO₂-based chemicals.

Socio-economical driving forces usually do not facilitate CO₂ conversion and utilization.

* C.S. Song, Catal. Today, 2006, 115, 2-32.

Paradigm Shift–Use CO₂ for Fuels?

Picture source: Suehiro Kunitake

Thermodynamics of CO₂ Conversion & Sequestration*

* C.S. Song, Catalysis Today, 2006, 115, 2-32.

Amounts of Uses vs Emissions The amounts of carbon in liquid and gaseous fuels are similar to those in CO_2 from flue gas of power plants. Thus converting CO_2 to fuels using renewable energy can dramatically cut down CO_2 emissions and also reduces the consumption of fossil fuels.

- C. Song, CO2 Conversion and Utilization, ACS, 2002 The actual utilization of CO₂ although significant for the chemical industry (ca. 200 Mt/y) represents a minor fraction of the anthropogenic emission (32,000 Mt/y)

– M. Aresta, J CO2 Utilization, 2013.

Use and Reuse of CO₂ – the "U" in CC<u>U</u>S

- CO2 to Fuels with renewable energy
 - Liquid fuels, SNG
 - Alcohol fuel
- CO2 to Chemicals
 - hydrocarbon chemicals $(C_2 C_4)$
 - oxygenated chemicals (MeOH, DMC, etc.)
 - As working fluid or co-reactant (sc-CO₂, etc.)
- CO2 to Durable Materials
 - carbonates materials
 - polymer materials

• CO₂-EOR / CO₂-EGR coupled with CO₂ storage

CRI's George Olah Renewable Methanol Plant

Located in Svartsengi, near Grindavik, Iceland, began production in 2011. In 2015 CRI expanded the plant from a capacity of 1.3 million litres/year to more than 5 million litres/year. The plant uses Cu-ZnO catalyst, and now recycles 5.5 thousand tonnes of CO2 a year (captured from flue gas of a power plant), which would otherwise be released into the atmosphere, using renewable energy. CRI's Emissions to Methanol: http://carbonrecycling.is/projects-1/

New Pd-Cu Bimetallic Cat for CO_2 to Methanol $CO_2 + 3 H_2 = CH_3 OH + H_2O$

X. Jiang, C. Song et al. Appl. Catal. B: Env. 2015 (170) 173-185

New In₂O₃/ZrO₂ Catalyst for CO₂ to Methanol

Highly selective CO2 hydrogenation with H2 to methanol under industrially relevant conditions.

Stu Borman, C&EN, 2016, 94 (13), 7, March 28, 2016.

Expt work by Javier Pérez-Ramírez of ETH Zurich and coworkers now demonstrate that zirconium oxide-supported In2O3 catalyzes the process under conditions similar to those required for industrial production (Angew. Chem. Int. Ed. 2016, DOI: 10.1002/anie.201600943).

Built on computational work led by Qingfeng Ge of Southern Illinois Univ and Tianjin Univ (ACS Catal. 2013, DOI: 10.1021/cs400132a).

Sunfire Gmbh: CO₂ to Hydrocarbon Fuel via FTS

Sunfire's pilot plant in Dresden, Germany, built over 2013-2014. Its Solid Oxide Electrolysis plant can convert CO2 to 160 litres (1 bbl) of hydrocarbons a day using renewable electricity, with a electricity to fuel carbon efficiency of 70%.

http://www.sunfire.de/en/kreislauf/power-to-liquids

Direct CO₂ Hydrogenation to Chemicals & Fuels

 $n \operatorname{CO}_2 + (3n+1) \operatorname{H}_2 = \operatorname{C}_n \operatorname{H}_{2n+2} + 2n \operatorname{H}_2 \operatorname{O}_2$ $n \operatorname{CO}_2 + 3n \operatorname{H}_2 = \operatorname{C}_n \operatorname{H}_{2n+1} \operatorname{OH} + (2n-1) \operatorname{H}_2 \operatorname{O}_2$

* Satthawong, Koizumi, Song, Prasassarakich. J. CO₂ Utilization 2013 (3-4) 102-106.

* C.S. Song, Energy Resources, **1995**, 16, 63-64.

CO₂ HYD over Conventional Fe and Co Catalysts

[7] T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.-S. Nam, K.-W. Jun, et al. Appl. Catal. A: Gen. 186 (1999) 201–213.

New Fe@Hollow S-1 as Support for CO2 HYD

0.20 M (AT-1), 0.30 M (AT-2), and 0.50 M (AT-3). **Right**: CO_2 hydrogenation into hydrocarbons over FeK catalysts loaded on solid silicalite-1 (P), hollow silicalite-1 (AT-2), and macroporous silicalite-1 (AT-11),

C Dai, A Zhang, X Guo, C Song. Chem. Mater., 2013, 25, 4197

Novel Fe-Co Bimetallic Catalysts for Selective Conv of CO₂ to C₂+ HCs

Known Facts: Co leads to CH₄ Fe shows low sel

Cat.: Fe-Co/Al₂O₃. $H_2/CO_2 = 3$, Temp: 573 K, Tot P: 1 MPa

^{*} Satthawong, Koizumi, Song, Prasassarakich. J. CO₂ Utilization 2013 (3-4) 102-106.

Selective C₂-C₄ Olefin Prod over Fe-Co

Effect of K content on $C_2^{=-}C_4^{=}$ yield and O/P from CO₂ HYD over Fe-Co(0.17)/K(Y)/Al₂O₃ cat.

Olefins were main products at K/Fe = 1.0 atom atom⁻¹

→ K suppressed olefin hydrogenation activity of the catalyst

Satthawong, Koizumi, Song, Prasassarakich. Cat. Today 2015 (251) 34-40.

Hollow Zeolite Encapsulating Ni-Pt@S-1 for CO₂ Reforming of CH₄ to Syngas (CO+H₂)

Fig. 7 CO₂ and CH₄ conversion as a function of time on stream over (a) 1.5Ni/S-1, (b) 1.5Ni@Hol S-1, (c) 1.5Ni=0.5Pt/S-1, and (d) 1.5Ni=0.5Pt@HolS-1 catalysts [800 °C, atmospheric pressure, GHSV = 72 000 ml g⁻¹ h⁻¹, and CH₄/CO₂ = 1 : 1 (v/v)].

CY Dai et al. J. Mater. Chem. A 2015, 3, 16461.

Sustainable Green Energy Cycle Using CO₂

Green & Renew Fuels Chemicals & Material

Catal Rxn Proc

+ R

 $CO_2 + H_2O$

Renew E

Transp Vehicle

Fossil Fuels (Oil, N Gas, Coal)

Power Pla

Fuel synthesis from CO₂ in large scale in real time has major impacts on mitigating CO₂ emission. CO₂ to fuels and chemicals reduces fossil resources consumption.

[•] C.S. Song, 2016, to be published.

Conclusions

- CO₂ capture and utilization present major challenges and new opportunities for sustainable green energy cycle development.
- Converting CO₂ to fuels and chemicals with renewable energy input can not only mitigate CO₂ emission, but also reduce fossil resources consumption.
- Major challenges in developing
 - novel nano-structured materials and more energyefficient and economically attractive processes for (1) CO₂ capture (post, pre-comb) in high capacity with fast kinetics, and (2) catalytic CO₂ conversion in high activity and selectivity to clean fuels, value-added chemicals, and materials using renewable energy

People Who Contributed at PSU, DUT, and Chula U

Xiaochun Xu, Xiaoliang Ma, Xiaoxing Wang, Eric Fillerup, Emanuela Peduzzi, Dongxiang Wang, Zhonghua Zhang, Bruce Miller, Alan Scaroni (PSU) for CO2 capture

Ratchy Satthwong, Naoto Koizumi, Xiao Jiang, Wenjia Wang (PSU), Fanshu Ding, Anfeng Zhang, Chengyi Dai, Fangyu Song, Xinwen Guo (DUT), and Pattarapan Prassasarachi (Chula U) for CO₂ conversion

Ratchy Satthwong Xiao Jiang Naoto Koizumi

Dongxiang Wang

Eric Fillerup Eman

Xiaoxing Wang

Acknowledgments

OFFICE OF NAVAL RESEARCH

BASF

Altex ConocoPhillips. The Chemical Company

S. AIR FORCE

DEPARTMENT OF ENVIRONMENTAL PROTECTION

National Science Foundation

The miracles of science-