

Reliability Perspectives on Clean Power Plan Implications NERC Reliability Assessments

John Moura Director, Reliability Assessment and System Analysis June 22, U.S. Energy Association

To ensure the reliability of the North American bulk power system

- Develop and enforce reliability standards
- Assess current and future reliability

- Analyze system events and recommend improved practices
- Encourage active participation by all stakeholders
- Accountable as ERO to regulators in the United States (FERC) and Canada (NEB and provincial governments)

NERC Reliability Assessments

- Reliability
 - Resource Adequacy
 - Operating Reliability
- Transmission adequacy
- Demand forecasts
- Demand-Side Resources
- Regional coordination
- Awareness and certainty
- Key issues emerging trends
 - Technical challenges
 - Evolving market practices
 - System elements/dynamics
 - Potential legislation/regulation

NERC Assessment Areas

- Retirement/displacement of conventional generation
 - Variable energy resources
 - Rapid penetration of electronically-coupled resources
- Essential Reliability Services
 - Reduced inertia
 - Frequency Response
 - Voltage Support
 - Ramping and flexibility needs
- Rapid penetration of new loads
- System controls and protection coordination
- Modeling and simulation constraints
- Increasing interface with distribution-centric resources

- The final rule extended compliance to 2022 from 2020
- Increased total reduction from 30% to 32% of 2005 levels
- Envisions Significant Increase in Renewables and Energy Efficiency – Clean Energy Incentive Plan
- Trading is projected by EPA to be a large mitigating factor for attainment of compliance goals

Example of Envisioned Glide Slope

Example: Arizona

Example of Envisioned Glide Slope

Example: Kentucky

- States required to demonstrate its consideration of reliability
- Mechanism for states to seek a revision to its plan for unanticipated and significant reliability challenges
- Reliability safety valve to address unanticipated or other extraordinary circumstances

- Assessment looking at potential reliability impacts of CPP Final Rule
- Developed through collaboration with stakeholders to inform policy discussions and highlight potential risks to BPS reliability
- Provides range of resource adequacy evaluations based on several potential cases using different models
- Provides framework for more granular studies at the state and regional level

- Formed to advise NERC on assessment scope and goals
- Representation
 - All NERC Regions
 - ISO\RTOs and Planning Coordinators
 - IPPs and Renewable Energy Producers
 - Trade Organizations
 - Power Marketers
 - Consultants
 - Canadian Representation
- Sub-group formed to author the recommendations document
- Work with modelers to develop scenarios and assumptions

CPP Phase II Scenarios

Reference Case	No CPP
Constrained Interstate Trading	 Intrastate trading develops, interstate constrained
Full Trading	 Full intrastate and interstate trading
High Renewables	 High penetration of renewables
Nuclear retirements	 Accelerated retirement of nuclear units

Emissions Reductions by State

Required Percentage Reduction: 2012 Baseline v. 2030 Goal

Coal capacity decline by up to 27 GWs

Coal Generation (TWh) Declines

Reference Case
 CPP Base Case

Large Amount of Renewable Integration

Tax credits and renewable portfolio standards drive renewables

CPP Base Case

Annual energy demand growth is expected to flatten

— CPP Base Case

National Trading Impacts Coal Retirements and Gas Additions

Scenario Cases Compared to Reference Case

Planning should already be under way due to the need for new transmission and natural gas pipeline infrastructure

Need for Transmission

High levels of variable generation will require significant transmission additions and reinforcements.

- Interconnect variable energy resources in remote areas
- Smooth the variable generation output across a broad geographical region
- Deliver ramping capability and ancillary services
- Construct/site/permit transmission to deliver power across long distances

Essential Reliability Services: Fundamentals

- "Building blocks" of physical capabilities
- Accentuated by resource changes
- Not all MWs are equal
- Some partly covered through ancillary services
- Inherently provided by synchronous/conventional generation, but can be synthetically provided by DR, batteries, and inverters

Frequency Excursion – Interconnection-wide Phenomena

RELIABILITY | ACCOUNTABILITY

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

As an electric system approaches a significant penetration in variable resources:

- Essential reliability services will be strained
- Technical aspects of the evolving resource mix must be given due consideration at state, federal, and provincial level
- Solution sets for maintaining reliability can come from:
 - $\circ~$ Market tools and rules
 - New technology integration
 - Standards or requirements
- Unresolved cost implications can impede solutions from materializing

- Address roles and responsibilities of planning agencies and
- reliability authorities
 - NERC Planning Coordinators and Transmission Planners
- Maintain adequate Essential Reliability Services
 - Needed for the reliability operation of the Bulk-Power System
- Address future characteristics of resources
 - Cycling, availability, environmentally constrained dispatch, etc
- Early identification of additional infrastructure needs for natural gas transportation and assurance
- Identify changes to Reserve Margins needed for supply adequacy

Plan Developers

- Emphasize implications of the reliability assurance provisions
- Lessons learned from other systems that have experienced significant resource shifts (e.g., Ontario)
- Address implications of increased distributed resources and control challenges
- Discuss potential options for solutions, including technologies that can support reliability

Reliability Finding #3: Operators and planners face uncertainty with increased levels of distributed energy resources and new technologies

- Distributed energy resources (DERs) are contributing to changing characteristics and control strategies in grid operations.
- NERC has established a task force focused on examination of reliability impacts of large amounts of DER on the BPS.

Cumulative Solar Installed Capacity in U.S. Since 2010 compared to Total Installed Capacity

Source: GTM Research (solar); FERC (historical non-solar figures); EIA (projected non-solar figures)

The Future is Now

RELIANDE 28 COUNTABILITY

Aliso Canyon: LA Basin Power Supply

- Mass versus Rate
- Parallels to previous regulations?
- Uncertainty with neighboring state plans and available transfers
- Energy efficiency expectations
- Timing and location of retirements
- Robustness of trading
- Legal impediments
- Transmission-level impacts
- Market sensitive information sharing

- Profound changes occurring on the BPS—resources and policies
- Lots of uncertainty in the future
 - nuclear, carbon, natural gas, climate trends, transmission
- New system behaviors and characteristics require new measurements for reliability
- Emerging reliability issues bring new technical (and political) challenges
- Must carefully balance costs and benefits
- Changes occurring irrespective of CPP
- NERC is well positioned to study, evaluate, and assess the reliability of the Bulk Power System

Questions and Answers

